Skip to main content
Log in

Optimal binary codes derived from \(\mathbb {F}_{2} \mathbb {F}_4\)-additive cyclic codes

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the algebraic structure of additive cyclic codes over the alphabet \({\mathbb {F}}_{2}^{r}\times {\mathbb {F}}_{4}^{s}={ \mathbb {F}}_{2}^{r}{\mathbb {F}}_{4}^{s},\) where r and s are non-negative integers, \(\mathbb {F}_{2}={\mathbb {GF}}(2)\) and \(\mathbb {F}_{4}={\mathbb {GF}} (4)\) are the finite fields of 2 and 4 elements, respectively. We determine generator polynomials for \(\mathbb {F}_{2}\mathbb {F}_{4}\)-additive cyclic codes. We also introduce a linear map W that depends on the trace map T to relate these codes to binary linear codes over \(\mathbb {F} _{2}.\) Further, we investigate the duals of \(\mathbb {F}_{2}\mathbb {F}_{4}\)-additive cyclic codes. We show that the dual of any \(\mathbb {F}_{2}\mathbb {F }_{4}\)-additive cyclic code is another \(\mathbb {F}_{2}\mathbb {F}_{4}\)-additive cyclic code. Using the mapping W, we provide examples of \(\mathbb {F}_{2}\mathbb {F}_{4}\)-additive cyclic codes whose binary images have optimal parameters. We also consider additive cyclic codes over \(\mathbb {F}_{4}\) and give some examples of optimal parameter quantum codes over \(\mathbb {F}_{4}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub, T., Siap, I., Aydin, N.: \({{\mathbb{Z}}}_2{{\mathbb{Z}}}_4\)-additive cyclic codes. IEEE Trans. Inf. Theory 60(3), 1508–1514 (2014)

    Article  Google Scholar 

  2. Aydin, N., Halilovic, A.: A generalization of quasi-twisted codes: multi-twisted codes. Finite Fields Appl. 45, 96–106 (2017)

    Article  MathSciNet  Google Scholar 

  3. Borges, J., Fernández-Córdoba, C., Pujol, J., Rif à, J., Villanueva, M.: \({{\mathbb{Z}}}_{2}{{\mathbb{Z}}}_{4}\)-linear codes: generator matrices and duality. Des. Codes Crypt. 54(2), 167–179 (2010)

    Article  Google Scholar 

  4. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  Google Scholar 

  5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  6. Carlet, C.: \({{\mathbb{Z}}}_{2^{k}}\)-linear codes. IEEE Trans. Inf. Theory 44, 1543–1547 (1998)

    Article  Google Scholar 

  7. Castagnoli, G., Massey, J.L., Schoeller, P.A., Seeman, N.: On repeated-root cyclic codes. IEEE Trans. Inf. Theory 37, 337–342 (1991)

    Article  MathSciNet  Google Scholar 

  8. Database on Binary Quasi-Cyclic Codes. http://www.tec.hkr.se/~chen/research/codes/qc.htm. Accessed Jan 2019

  9. Grassl, M.: Table of Bounds on Linear Codes. http://www.codetables.de/

  10. Greferath, M., Schmidt, S.E.: Gray isometries for finite chain rings. IEEE Trans. Inf. Theory. 45(7), 2522–2524 (1999)

    Article  Google Scholar 

  11. Güneri, C., Özbudak, F., Özkaya, B., Saçıkara, E., Sepasdar, Z., Solé, P.: Structure and performance of generalized quasi-cyclic codes. Finite Fields Appl. 47, 183–202 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\mathbb{Z}}_{4}\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory. 40(2), 301–319 (1994)

    Article  Google Scholar 

  13. Honold, T., Landjev, I.: Linear codes over finite chain rings. In: Optimal Codes and Related Topics. Sozopol, Bulgaria, pp. 116–126 (1998)

  14. Lint, J.H.: Repeated root cyclic codes. IEEE Trans. Inf. Theory 37, 343–345 (1991)

    Article  MathSciNet  Google Scholar 

  15. Peterson, W.W.: Error-Correcting Codes. MIT Press, Cambridge (1961)

    MATH  Google Scholar 

  16. Peterson, W.W., Weldon Jr., E.J.: Error-Correcting Codes, 2nd edn. MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  17. Shi, M., Wu, R., Krotov, D.S.: On \(\mathbb{Z}_{p}\mathbb{Z} _{p^{k}}\)-additive codes and their duality. IEEE Trans. Inf. Theory 65(6), 3842–3847 (2018)

    Google Scholar 

  18. Shi, M., Qian, L., Sok, L., Solé, P.: On constacyclic codes over \(\mathbb{Z}_{4}[u]/\left\langle u^{2}-1\right\rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)

    Article  MathSciNet  Google Scholar 

  19. Siap, I., Kulhan, N.: The structure of generalized quasi-cyclic codes. Appl. Math. E-Notes 5, 24–30 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond.Ser. A Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Aydogdu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abualrub, T., Aydin, N. & Aydogdu, I. Optimal binary codes derived from \(\mathbb {F}_{2} \mathbb {F}_4\)-additive cyclic codes . J. Appl. Math. Comput. 64, 71–87 (2020). https://doi.org/10.1007/s12190-020-01344-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01344-5

Keywords

Mathematics Subject Classification

Navigation