Skip to main content
Log in

Existence of solutions for nonlinear fractional differential equations with non-homogenous boundary conditions

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper we consider the existence of solution to systems of nonlinear conformable fractional differential equations with non-homogenous Dirichlet, Neumann, Sturm–Liouville conditions or the periodic condition. We show that the system has at least one solution by using tube solution and Schauder fixed point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ahmad, B., Luca, R.: Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions. Appl. Math. Comput. 339, 516–534 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Ahmad, B., Luca, R.: Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions. Fract. Calc. Appl. Anal. 21(2), 423–441 (2018)

    Article  MathSciNet  Google Scholar 

  4. Anderson, D.R., Avery, R.I.: Fractional-order boundary value problem with Sturm–Liouville boundary conditions. Electron. J. Differ. Equ. 29, 10 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Atanacković, T., Pilipović, S.: Bogoljub Stanković: contributions to generalized asymptotics and mechanics. Bull. Cl. Sci. Math. Nat. Sci. Math. No. 43, 27–38 (2018)

    Google Scholar 

  6. Bai, Z., et al.: Monotone iterative method for fractional differential equations. Electron. J. Differ. Equ. 6, 8 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Batarfi, H., et al.: Three-point boundary value problems for conformable fractional differential equations. J. Funct. Spaces 706383, 6 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Bayour, B., Torres, D.F.M.: Existence of solution to a local fractional nonlinear differential equation. J. Comput. Appl. Math. 312, 127–133 (2017)

    Article  MathSciNet  Google Scholar 

  9. Benchohra, M., Bouriah, S., Nieto, J.J.: Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112(1), 25–35 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bendouma, B., Cabada, A., Hammoudi, A.: Existence of solutions for conformable fractional problems with nonlinear functional boundary conditions. Malaya J. Mat. 7(4), 700–708 (2019)

    Article  MathSciNet  Google Scholar 

  11. Bohner, M., Tisdell, C.C.: Second order dynamic inclusions. J. Nonlinear Math. Phys. 12(suppl. 2), 36–45 (2005)

    Article  MathSciNet  Google Scholar 

  12. Cabada, A., Grossinho, M.R., Minhós, F.: Extremal solutions for third-order nonlinear problems with upper and lower solutions in reversed order. Nonlinear Anal. 62(6), 1109–1121 (2005)

    Article  MathSciNet  Google Scholar 

  13. Chen, Z., Liu, W.: Dynamical behavior of fractional-order energy-saving and emission-reduction system and its discretization. Nat. Resour. Model. 32(2), e12203 (2019)

    Article  MathSciNet  Google Scholar 

  14. Di, B., Pang, H.: Existence results for the fractional differential equations with multi-strip integral boundary conditions. J. Appl. Math. Comput. 59(1–2), 1–19 (2019)

    Article  MathSciNet  Google Scholar 

  15. Frigon, M.: Boundary and periodic value problems for systems of nonlinear second order differential equations. Topol. Methods Nonlinear Anal. 1(2), 259–274 (1993)

    Article  MathSciNet  Google Scholar 

  16. Frigon, M., Gilbert, H.: Boundary value problems for systems of second-order dynamic equations on time scales with \(\Delta \)-Carathéodory functions. Abstr. Appl. Anal. 234015, 26 (2010)

    MATH  Google Scholar 

  17. Frigon, M., Gilbert, H.: Existence theorems for systems of third order differential equations. Dyn. Syst. Appl. 19(1), 1–23 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Gilbert, H.: Existence theorems for first-order equations on time scales with \(\Delta \)-Carathéodory functions. Adv. Differ. Equ. 650827, 20 (2010)

    MATH  Google Scholar 

  19. Graef, J.R., et al.: On the lower and upper solution method for higher order functional boundary value problems. Appl. Anal. Discrete Math. 5(1), 133–146 (2011)

    Article  MathSciNet  Google Scholar 

  20. Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003)

    Book  Google Scholar 

  21. Granas, A., Guenther, R.B., Lee, J.W.: Some general existence principles in the Carathéodory theory of nonlinear differential systems. J. Math. Pures Appl. 70(2), 153–196 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Hartman, P.: On boundary value problems for systems of ordinary, nonlinear, second order differential equations. Trans. Am. Math. Soc. 96, 493–509 (1960)

    Article  MathSciNet  Google Scholar 

  23. Khalil, R., et al.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  25. Liu, B.: Solvability of multi-point boundary value problem at resonance. IV. Appl. Math. Comput. 143(2–3), 275–299 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Liu, W., Zhuang, H.: Existence of solutions for Caputo fractional boundary value problems with integral conditions. Carpathian J. Math. 33(2), 207–217 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Lu, H., Han, Z., Sun, S.: Multiplicity of positive solutions for Sturm–Liouville boundary value problems of fractional differential equations with \(p\)-Laplacian. Bound. Value Probl. 2014, 17 (2014)

    Article  MathSciNet  Google Scholar 

  28. Lv, Z., Gong, Y., Chen, Y.: Existence and uniqueness for a kind of nonlocal fractional evolution equations on the unbounded interval. Bound. Value Probl. 176, 13 (2018)

    MathSciNet  Google Scholar 

  29. Ma, R.Y., Zhang, J.H., Fu, S.M.: The method of lower and upper solutions for fourth-order two-point boundary value problems. J. Math. Anal. Appl. 215(2), 415–422 (1997)

    Article  MathSciNet  Google Scholar 

  30. Padhi, S., et al.: Monotone iterative method for solutions of fractional differential equations. Mem. Differ. Equ. Math. Phys. 77, 59–69 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall Inc, Englewood Cliffs (1967)

    MATH  Google Scholar 

  32. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Translated from the 1987 Russian Original. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

  33. Zhao, J., Dou, J., Zhou, H.: Symmetry of positive solutions of fractional Laplacian equation and system with Hardy–Sobolev exponent on the unit ball. J. Pseudo Differ. Oper. Appl. 6(4), 503–519 (2015)

    Article  MathSciNet  Google Scholar 

  34. Zhuang, H., Liu, W.: Existence results for a second-order \(q\)-difference equation with only integral conditions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79(4), 221–234 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Number 11771216], the Key Research and Development Program of Jiangsu Province (Social Development) [Grant Number BE2019725], the Six Talent Peaks Project in Jiangsu Province [Grant Number 2015-XCL-020] and the Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Liu, W. Existence of solutions for nonlinear fractional differential equations with non-homogenous boundary conditions. J. Appl. Math. Comput. 64, 195–214 (2020). https://doi.org/10.1007/s12190-020-01351-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01351-6

Keywords

Mathematics Subject Classification

Navigation