Skip to main content
Log in

A novel iterative solution for time-fractional Boussinesq equation by reproducing kernel method

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this study, iterative reproducing kernel method (RKM) will be applied in order to observe the effect of the method on numerical solutions of fractional order Boussinesq equation. Hilbert spaces and their kernel functions, linear operators and base functions which are necessary to obtain the reproducing kernel function are clearly explained. Iterative solution is constituted in a serial form by using reproducing kernel function. Then convergence of RKM solution is shown with lemma and theorem. Two problems, “good” Boussinesq and generalized Boussinesq equations, are examined by using RKM for different fractional values. Results are presented with tables and graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boussinesq, M.: Théorie générale des mouvements qui sout propagés dans un canal rectangularire horizontal. C. R. Acad. Sci. Paris 73, 256–260 (1871)

    MATH  Google Scholar 

  2. Boussinesq, M.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. Sect. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  3. Boussinesq, M.: Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants á l’Académie des Sciences Inst. France, pp. 1-680 (1877)

  4. Kalantorov, V.K., Ladyzhenskaya, O.A.: The occurence of collapse for quailinear equation of parabolic and hyperbolic types. J. Soviet Math. 10, 53–70 (1978)

    Article  Google Scholar 

  5. Lin, Q., Wu, Y.H., Loxton, R.: On the Cauchy problem for a generalized Boussinesq equation. J. Math. Anal. Appl. 353, 186–195 (2009)

    Article  MathSciNet  Google Scholar 

  6. Xue, R.: The initial-boundary value problem for the “good” Boussinesq equation on the bounded domain. J. Math. Anal. Appl. 343, 975–995 (2008)

    Article  MathSciNet  Google Scholar 

  7. Brugnano, L., Gurioli, G., Zhang, C.: Spectrally accurate energy-preserving methods for the numerical solution of the “good” Boussinesq equation. Numer. Methods Partial Differ. Equ. 35, 1343–1362 (2019)

    Article  MathSciNet  Google Scholar 

  8. Manoranjan, V.S., Mitchell, A.R., Morris, J.L.: Numerical solutions of the good Boussinesq equation. SIAM J. Sci. Stat. Comput. 5, 946–957 (1984)

    Article  MathSciNet  Google Scholar 

  9. Manoranjan, V.S., Ortega, T., Sanz-Serna, J.M.: Soliton and antisoliton interactions in the “good” Boussinesq equation. J. Math. Phys. 29, 1964–1968 (1988)

    Article  MathSciNet  Google Scholar 

  10. Nguyen, L.T.K.: Soliton solution of good Boussinesq equation. Vietnam J. Math. 44, 375–385 (2016)

    Article  MathSciNet  Google Scholar 

  11. Yan, J., Zhang, Z., Zhao, T., Liang, D.: High-order energy-preserving schemes for the improved Boussinesq equation. Numer. Methods Partial Differ. Equ. 34, 1145–1165 (2018)

    Article  MathSciNet  Google Scholar 

  12. Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31, 202–224 (2015)

    Article  MathSciNet  Google Scholar 

  13. Bratsos, A.G.: Solitary-wave propagation and interactions for the “good” Boussinesq equation. Int. J. Comput. Math. 85, 143–1440 (2008)

    Article  MathSciNet  Google Scholar 

  14. El-Zoheiry, H.: Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation. Appl. Numer. Math. 45, 161–173 (2003)

    Article  MathSciNet  Google Scholar 

  15. Karaagac, B., Ucar, Y., Esen, A.: Numerical solutions of the improved Boussinesq equation by the Galerkin quadratic B-spline finite element method. Filomat 32, 5573–5583 (2018)

    Article  MathSciNet  Google Scholar 

  16. Zaremba, S.: Sur le calcul numérique des fonctions demandées dans le probléme de Dirichlet et le problème hydrodynamique. Bulletin International de l’Académie des Sciences de Cracovie, pp. 125–195 (1908)

  17. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  18. Schwartz, L.: Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J. Anal. Math. 13, 115–256 (1964)

    Article  Google Scholar 

  19. Saitoh, S., Sawano, Y.: Theory of reproducing kernels and applications. pp. 1–452. Springer, Singapore (2016)

  20. Cui, M.G., Lin, Y.Z.: Nonlinear Numercial Analysis in the Reproducing Kernel Space, pp. 1–226. Nova Science Publisher, New York (2009)

    Google Scholar 

  21. Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Abu Arqub, O., Odibat, Z., Al-Smadi, M.: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn. 94, 1819–1834 (2018)

    Article  Google Scholar 

  23. Yao, H.: Reproducing Kernel method for the solution of nonlinear hyperbolic telegraph equation with an integral condition. Numer. Methods Partial Differ. Equ. 27, 867–886 (2011)

    Article  MathSciNet  Google Scholar 

  24. Wang, Y., Du, M., Tan, F., Li, Z., Nie, T.: Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions. Appl. Math. Comput. 219, 5918–5925 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Sakar, M.G., Akgül, A., Baleanu, D.: On solutions of fractional Riccati differential equations. Adv. Diff. Equ. 39, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 73, 1243–1261 (2017)

    Article  MathSciNet  Google Scholar 

  27. Jiang, W., Lin, Y.: Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Commun. Nonlinear Sci. Numer. Simul. 16, 3639–3645 (2011)

    Article  MathSciNet  Google Scholar 

  28. Mohammadi, M., Mokhtari, R., Panahipour, H.: A Galerkin-reproducing kernel method: application to the 2D nonlinear coupled Burgers equations. Eng. Anal. Bound. Elem. 37, 1642–1652 (2013)

    Article  MathSciNet  Google Scholar 

  29. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integro differential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ. 34, 1577–1597 (2018)

    Article  Google Scholar 

  30. Sakar, M.G., Saldır, O., Erdogan, F.: An iterative approximation for time-fractional Cahn-Allen equation with reproducing kernel method. Comput. Appl. Math. 37, 5951–5964 (2018)

    Article  MathSciNet  Google Scholar 

  31. Sakar, M.G., Saldır, O., Akgül, A.: A novel technique for fractional Bagley-Torvik equation. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89, 539–545 (2019)

    Article  MathSciNet  Google Scholar 

  32. Saldır, O., Sakar, M.G., Erdogan, F.: Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate. Comput. Appl. Math. 198, 1–23 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Sakar, M.G., Saldır, O., Erdogan, F.: A hybrid method for singularly perturbed convection–diffusion equation. Int. J. Appl. Comput. Math. 135, 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations, pp. 1–340. Academic Press, New York (1999)

    MATH  Google Scholar 

  35. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, pp. 1–247. Springer, Berlin (2010)

    Book  Google Scholar 

  36. Arqub, O.A., Maayah, B.: Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations. Chaos Solitons Fractals 126, 394–402 (2019)

    Article  MathSciNet  Google Scholar 

  37. Arqub, O.A.: Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing kernel method. Int. J. Numer. Methods Heat Fluid Flow 29, 1–23 (2019)

    Google Scholar 

  38. Arqub, O.A.: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 55, 1–28 (2018)

    Article  MathSciNet  Google Scholar 

  39. Yang, H.: Homotopy analysis method for the time-fractional Boussinesq equation. Univ. J. Math. Appl. 3, 12–18 (2020)

    Google Scholar 

  40. Zhang, H., Jiang, X., Zhao, M., Zheng, R.: Spectral method for solving the time fractional Boussinesq equation. Appl. Math. Lett. 85, 164–170 (2018)

    Article  MathSciNet  Google Scholar 

  41. Qi, W.: Numerical solutions of fractional Boussinesq equation. Commun. Theor. Phys. 47, 413–420 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Giyas Sakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this part, the general definition and inner product of \(W_{2}^{n}[0,1]\) will be given. Definition of \(W_{2}^{5}\) and \(W_{2}^{3}\) spaces and their kernel functions will be presented for obtaining reproducing kernel function of \(W_{2}^{(5,3)}(\varOmega )\). Then, it will be explained how to obtain the kernel functions of \(W_{2}^{(1,1)}(\varOmega )\) and \(W_{2}^{(5,3)}(\varOmega )\) spaces.

\(\mathbf {W}_{2}^{n}[0,1]\) space and its kernel function

\(W_{2}^{n} \left[ {0,\,1} \right] \) space is described as

$$\begin{aligned} W_{2}^{n}[0,1]=\{w(\eta )|w,w^{'},...,w^{(n-1)} \,\ \hbox {are AC functions}, \,\ w^{(n)}\in L^2[0,1]\}. \end{aligned}$$

Inner product of \(W_{2}^{n} \left[ {0,\,1} \right] \) can be written as:

$$\begin{aligned} \langle w\left( \eta \right) ,p\left( \eta \right) \rangle _{W_{2}^{n}} =\sum _{i=0}^{n-1}w^{(i)}(0)p^{(i)}(0)+\int \limits _0^1 {w^{(n)}(\eta )p^{(n)}(\eta )d\eta }, \end{aligned}$$
(73)

and norm of \(W_{2}^{n} \left[ {0,\,1} \right] \) is given as follow:

$$\begin{aligned} \left\| \omega \right\| _{W_{2}^{n}}^2 =\langle \omega ,\omega \rangle _{W_{2}^{n}} ,\,\,\,\omega ,\sigma \in W_{2}^{n} \left[ {0,\,1} \right] . \end{aligned}$$
(74)

It will be given some kernel functions for different initial-boundary conditions and special cases.

Case I: \(n=1\);

$$\begin{aligned} K_y^{\{1\}} \left( \eta \right) = \left\{ {{\begin{array}{*{20}c} {1 + \eta , \,\,\, \eta \le y,} \\ {1 + y , \,\,\, y >\eta ,} \\ \end{array} }} \right. \end{aligned}$$
(75)

and

$$\begin{aligned} K_z^{\{1\}} \left( \zeta \right) = \left\{ {{\begin{array}{*{20}c} {1 + \zeta , \,\,\, \zeta \le z,} \\ {1 + z , \,\,\, y >\zeta .} \\ \end{array} }} \right. \end{aligned}$$
(76)

Case II: \(n=3\) and \(w(0)={w}'(0)=0\)

$$\begin{aligned} K_z^{\{3\}}(\zeta ) = \left\{ {{\begin{array}{*{20}c} {\sum _{i=1}^{6}c_i(z)\zeta ^{i-1},\,\,\,\zeta \le z,} \\ \\ {\sum _{i=1}^{6}d_i(z)\zeta ^{i-1},\,\,\,\zeta > z,} \\ \end{array} }} \right. \end{aligned}$$
(77)

For \(\zeta \le z\), the kernel function \(K_z^{\{3\}}(\zeta )\) is given as:

$$\begin{aligned} \frac{1}{4}z^2\zeta ^2+\frac{1}{12}z^2\zeta ^3-\frac{1}{24}z\zeta ^4+\frac{1}{120}\zeta ^5 \end{aligned}$$
(78)

Case III: \(n=5\) and \(w(0)=w(1)={w}''(0)={w}''(1)=0\)

$$\begin{aligned} K_y^{\{5\}}(\eta ) = \left\{ {{\begin{array}{*{20}c} {\sum _{i=1}^{10}c_i(y)\eta ^{i-1},\,\,\,\eta \le y,} \\ \\ {\sum _{i=1}^{10}d_i(y)\eta ^{i-1},\,\,\,\eta > y,} \\ \end{array} }} \right. \end{aligned}$$
(79)

For \(\eta \le y\), the kernel function \(K_y^{\{5\}}(\eta )\) is given as:

$$\begin{aligned}&((2969/1654073)y-(91/33081460)y^9+(819/33081460)y^8 \\&\quad -(579/8270365)y^7+(231/8270365)y^6+(4347/16540730)y^5\\&\quad +(4347/3308146)y^4-(5544/1654073)y^3)\eta +((127013/19848876)y^3\\&\quad -(91723/3572797680)y^7+(636517/3572797680)y^6\\&\quad -(635131/1190932560)y^5-(635131/238186512)y^4-(11/1190932560)y^9\\&\quad +(11/132325840)y^8-(5544/1654073)y)\eta ^3\\&\quad +((222389/158791008)y^4-(88249/28582381440)y^7\\&\quad +(635131/28582381440)y^6-(319739/4763730240)y^5\\&\quad -(635131/238186512)y^3+(23/6351640320)y^9-(69/2117213440)y^8\\&\quad +(4347/3308146)y)\eta ^4+((222389/793955040)y^4\\&\quad -(88249/142911907200)y^7+(635131/142911907200)y^6\\&\quad -(319739/23818651200)y^5-(635131/1190932560)y^3\\&\quad +(23/31758201600)y^9-(69/10586067200)y^8+(4347/16540730)y)\eta ^5\\&\quad +(-(127013/2381865120)y^3\\&\quad +(91723/428735721600)y^7-(636517/428735721600)y^6\\&\quad +(635131/142911907200)y^5+(635131/28582381440)y^4\\&\quad +(11/142911907200)y^9-(11/15879100800)y^8+(231/8270365)y)x^6\\&\quad +((1/10080)y^2-(105619/3001150051200)y^7\\&\quad +(91723/428735721600)y^6-(88249/142911907200)y^5\\&\quad -(88249/28582381440)y^4-(91723/3572797680)y^3\\&\quad -(193/1000383350400)y^9+(193/111153705600)y^8\\&\quad -(579/8270365)y)\eta ^7+(-(2969/66692223360)y\\&\quad +(13/190549209600)y^9-(13/21172134400)y^8+(193/111153705600)y^7\\&\quad -(11/15879100800)y^6-(69/10586067200)y^5\\&\quad -(69/2117213440)y^4+(11/132325840)y^3)\eta ^8+(-(13/1714942886400)y^9\\&\quad +(13/190549209600)y^8\\&\quad -(193/1000383350400)y^7+(11/142911907200)y^6\\&\quad +(23/31758201600)y^5+(23/6351640320)y^4\\&\quad -(11/1190932560)y^3-(91/33081460)y+1/362880)\eta ^9 \end{aligned}$$

For obtaining of coefficients \(c_i(y)\) and \(d_i(y)\), please see [20].

Note: The reproducing kernel function of \(W_{2}^{(5,3)}(\varOmega )\) is found by multiplying of kernel functions \(K_z^{\{3\}}(\zeta )\) and \(K_y^{\{5\}}(\eta )\). Similarly, the kernel function of \(W_{2}^{(1,1)}(\varOmega )\) is found by multiplying of kernel functions \(K_z^{\{1\}}(\zeta )\) and \(K_y^{\{1\}}(\eta )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakar, M.G., Saldır, O. A novel iterative solution for time-fractional Boussinesq equation by reproducing kernel method. J. Appl. Math. Comput. 64, 227–254 (2020). https://doi.org/10.1007/s12190-020-01353-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01353-4

Keywords

Mathematics Subject Classifications

Navigation