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Abstract
This work is considered in the framework of studies dedicated to the control problems,
especially in epidemiology where the scientist are concerned to develop effective con-
trol strategies to minimize the number of infected individuals. In this paper, we set
this problem as an asymptotic target control problem under mixed state-control con-
straints, for a general class of ordinary differential equations that model the temporal
evolution of disease spread. The set of initial data, from which the number of infected
people decrease to zero, is generated by a new type of Lyapunov functions defined
in the sense of viability theory. The associated controls are provided via selections of
adequately designed feedback map. The existence of such selections is improved by
using Micheal selection theorem. Finally, an application to the SIRS epidemic model,
with numerical simulations, is given to show the efficiency of our approach. To the
best of our knowledge, our work is the first one that used a set-valued approach based
on the viability theory to deal with an epidemic control problem.

Keywords Non-linear control systems · Epidemic models · Lyapunov functions ·
Viability theory · Contingent cone · Selections

Mathematics Subject Classification 93C15 · 93D05 · 92D30 · 54C60

1 Introduction and problem statement

Infectious diseases have marked the history of human societies. Throughout the cen-
turies and the world, they have always been the leading cause of death. One thinks of
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the great plagues of the Middle Ages which emptied cities of their populations and
caused urban civilization to regress (a third of the European population disappeared
between the end of the fourteenth and the beginning of the fifteenth century [1]). The
viruses imported intoAmerica by the Spaniards which decimated the local populations
more surely than the fights. The Spanish fluwhich causedmore deaths at the beginning
of the twentieth century than the First World War. The Acquired Immunodeficiency
Syndrome, better known under its acronymAIDS, which is still the most deadly infec-
tious disease in the world, and which has claimed nearly 25 million victims since its
appearance in 1981. We also think of the Coronavirus disease (Covid-19), which is
now considered as a global pandemic.

To counter the ravages that infectious diseases can cause, public health decision-
makersmust have relevant tools to assist them in their decision-making. In this context,
mathematicians, epidemiologists and immunologists have been working together for
quite some time to create mathematical models that allow competent authorities to
prepare in advance to respond quickly and effectively if an outbreak occurs.

The first model was developed by Daniel Bernoulli in 1760 for smallpox [2]. But,
the foundations of the epidemic modelling based on the compartmental models were
established by Sir Ronald Ross, W. H. Hamer, W. O. Kermack and others. In these
models, the population is divided into classes that contain individuals with the same
epidemiological status. An interesting overview of the history of mathematical mod-
els in epidemiology can be found in [3–6]. Currently, epidemiological models are
increasingly used and present a powerful tool for studying complex systems. Its con-
tribution to the fight against epidemics is indisputable. It enables us to understand the
mechanisms of transmission, to study the characteristics of an epidemic, to predict
its evolution and to evaluate different intervention strategies to find the best control
program.

In the literature, several works have addressed the problems of controlling the
spread of infectious diseases based on epidemiological models with compartments.
Di Giamberardino and Iacoviello [7] proposed an epidemic control problem based on
a three compartments model and a vaccination strategy with a cost index that weights
differently the control depending on the severity of the disease. Buonomo et al. [8]
focus on an epidemic model which incorporates a non-linear force of infection and
two controls: an imperfect preventive vaccine given to susceptible individuals and
treatment given to infectious. Work done by Zakary et al. [9], devise a discrete time
compartmentmodel depicting the spread of infectious diseases in various geographical
regions that are connected by any kind of anthropological movement. The authors
used two control variables which represent the effectiveness rates of vaccination and
travel-blocking operation, and they focus to control the outbreaks of an epidemic that
affects a hypothetical population belonging to a specific region. Another work that
concerns the control of the Ebola virus disease was proposed by Mhlanga [10]. The
mathematical model includes control functions representing educational campaigns in
their respective patches, with one patch having more effective controls than the other.
Moualeu et al. [11] presented a deterministic model for the transmission dynamics of
Tuberculosis in the context of weak diagnosis capacity. Optimal control theory is used
to obtain a cost-effective balance of two different intervention methods. Degang et al.
[12] presented a novel SIVRSmathematical model for infectious diseases, which takes
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into account the virus variation factors. Authors proposed an optimal control problem
to maximize the recovered agents with the limited resource allocation. Existence of
a solution to the optimal control problem is given based on Pontryagin’s Minimum
Principle. Bolzoni et al. [13] proposed a problem of minimizing epidemic size and
duration in SIR models. Optimal control through either vaccination or isolation is
investigated by application of Pontryagin’s Maximum Principle. Using a basic SEI
model with saturated incidence rate, Baba et al. [14] studied the effect of optimal
controller and awareness on the dynamic of Tuberculosis. In these works and in many
others (see [15–20] and the references therein) the authors have solved the formulated
control problems using classical results of control theory, in particular the famous
Pontryagin’s minimum principle [21].

In this paper, we propose an alternative approach which is direct and allows char-
acterizing one or more controls aimed at achieving the null number of infected people
at a final time. Our approach is based on viability theory [22], which allows the adap-
tation of the evolution of a dynamic system to the restrictions imposed on the state and
the control. We are interested here in compartment models that represent the evolution
of an infectious disease in a population, which are written as follows

ẋ = f (x, y, u), (1a)

ẏ = ψ(x, y, u), (1b)

with initial conditions

xi (0) = x0i for each i = 1, . . . , n and y(0) = y0, (1c)

for an integer n and where the xi ’s denotes the number of individuals in a population
such as susceptible and recovered, while y denotes the number of infected individuals.
Therefore, the state (x, y) evolves in the subset

Ω
.= R

n+ × R+,

and the control u takes values within constraints subset

U .=
p∏

i=1

[0, umax
i ], (2)

where umax
i are positive numbers and p an integer. Both functions f and ψ map

R
n ×R×R

p into Rn and R respectively, and they are sufficiently smooth. Then, our
control problem is stated as follows

Problem: For all (x0, y0) ∈ Γ ⊆ Ω , find a control ū such that:

ū : [0,∞) → U , (3a)

(x̄(t), ȳ(t)) ∈ Ω, for all t ≥ 0, (3b)

lim
t→∞ ȳ(t) = 0, (3c)

where (x̄, ȳ) denotes a solution of system (1) for control ū.
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The problem (3) has been treated byKassara [23] andKassara andMoustafid [24] in
the framework of the set-valued approach for a class of ODE immunotherapy models.
Such models was expressed by a non-linear control system (1), in the particular case,
where the dynamics f (1a) is affine in control u, and the Eq.(1b) is given as follows

ẏ = yψ(x, y). (4)

Although the approach proposed by the authors can be used for several models of
cancer treatment, it is not appropriate for a large class of models where the state y
can be controlled to zero by acting on its dynamics directly, especially for epidemic
models, see for instance [25,26].

Inspired by the work done in [27], we provide a unified set-valued approach in order
to deal with the problem (3) for a more general class of ODE systems, where f can
be non-affine with respect to the control and the dynamics ψ depend on the control
variable. More precisely, our contribution here is to seek conditions under which, any
Lyapunov function ϕ (defined independently from dynamics ψ , in a sense specified
below) can generate a domain Ωϕ and a closed-convex valued multifunction Gϕ in
such a way the controls that solves the problem (3) from Ωϕ are given via selections
of multifunction Gϕ .

Such Lyapunov functions consist of C1 real-valued functions ϕ defined on R+ ×R

and satisfying

h : [0 ∞) → R+ is differentiable and
ϕ(h(t), ḣ(t)) ≤ 0 for all t ≥ 0,

�⇒ lim
t→∞ h(t) = 0. (5)

Note such functions ϕ depend only upon subset R+, we thereby call them R+-
Lyapunov functions. This type of functions was firstly introduced in [27] dealing
with constrained asymptotic null-controllability.

Our approach takes advantage of the unified framework of viability theory [28] and
set-valued analysis [29,30]. Themain advantage is that for any initial data starting from
Ωϕ the state stays in this region overcoming the concern mentioned in (3c). This is due
to the fact that, the multifunction of regulation Gϕ includes the tangential condition for
viability. Even when initial data start outside the regionΩϕ it is possible to reach it in a
certain instant.Moreover, it is of interest to stress that in the case of convex constraints,
the multifunction Gϕ bring us an explicit continuous selections and universal formula,
notably the minimal selection despite its discontinuity. Another advantage is that this
set-valued framework can be considered as a unified setting for dealing with problem
(3) for an important class of ODE models including, for instance, both cancer and
epidemic models.

Throughout the paper, the inner product on Euclidean space is denoted 〈 , 〉, and
corresponding norm | |. For a vector z we denote by zi its i th component. Let T be a
linear operator and we denote its adjoin operator by T ′ and its norm by ‖T ‖.

Also, we consider the notation

∇xψ
.=

(
∂ψ

∂x1
, . . . ,

∂ψ

∂xn

)′
and ∇uψ

.=
(

∂ψ

∂u1
, . . . ,

∂ψ

∂u p

)′
.
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The remainder of the paper is structured as follows: In Sect. 2 we provide some
notations and preliminary lemmas. Section 3 will be devoted to presenting our control
set-valued approach, then Sect. 4 to prove the existence of continuous selections under
sufficient conditions. To show the efficiency of our approach we propose, in Sect. 5, an
application to a controlled SI RS epidemic model. We conclude this paper in Sect. 6.

2 Definitions and preliminary results

In this section, we present some viability concepts and mathematical tools to be used
next.

Let K be a nonempty subset of an Euclidean space R
N . The contingent cone to

subset K at point x ∈ K is defined by

TK (x) = {y ∈ R
N | lim inf

ε↓0
d(x + εy, K )

ε
= 0},

where d(y, K )
.= inf{|z − y| | z ∈ K }. It is useful to note the following properties of

the contingent cones:

(a) If x ∈ int(K ), the interior of K , then TK (x) = R
N .

(b) TK (x) is closed for each x ∈ K .
(c) If K is convex, then TK (x) is convex for each x ∈ K .
(d) If K is closed and convex then the map TK (·) from K to subsets of RN is lsc.

In (d) above, the short-term lsc means that multifunction TK (·) is lower semi-
continuous, i.e. for every x ∈ K and any sequence of elements xk of K converging to
x , it holds that:

for each y ∈ TK (x), there exist a sequence yk ∈ TK (xk) that converges to y.

Next we provide a result which is fundamental for building our control strategy.
In [29] the authors gave a useful characterization of the contingent cone in case of
subsets defined by inequalities:

Lemma 1 Let φ : RN → R be a differentiable mapping for an integer N. Given a
closed convex subset K of RN and let D

.= {z ∈ K | φ(z) ≤ 0} and z0 ∈ D. Suppose
that there exists ξ0 ∈ TK (z0) such that dφ(z0)ξ0 < 0, then

ξ ∈ TD(z0) ⇐⇒
ξ ∈ TK (z0)
and
dφ(z0)ξ ≤ 0 if φ(z0) = 0,

(6)

where dφ(·) denotes the differential operator of φ.
Let ξ : RN → R

N and consider the following system:

ż = ξ(z),
z(0) = z0.

(7)
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The subset D is said to be locally viable under system (7), if for all z0 ∈ D there exist
t̄ > 0 and a solution to system (7), z̄(·) on [0, t̄) such that z̄(t) ∈ D for all t ∈ [0, t̄).

The following lemma gives us sufficient conditions, in terms of contingent cones,
for which the property above holds true:

Lemma 2 Assume that function ξ is continuous on the closed subset D. Then D is
locally viable under system (7) if and only if the following tangential condition holds,

ξ(z) ∈ TD(z) for each z ∈ D. (8)

The global solution of the system (7) is provided by using the notion of linear
growth. A smooth function ξ mapping a subset D ofRN intoRN is said to be of linear
growth on subset D, if there exists a constant k > 0 such that

|ξ(z)| ≤ k(1 + |z|) for all z ∈ D.

However, such a condition is not required when the subset D is bounded, or when
the function ξ is bounded on this subset.

By selection of a multifunction Q it is meant a function ξ such that ξ(z) ∈ Q(z)
for all x . We cite at this opportunity the famous Michael selection theorem [30] which
will be repeatedly used in the paper:

Lemma 3 If a multifunction Q is lsc and has closed convex values, then for all (z0, v0)
such that v0 ∈ Q(z0), there exists a continuous selection σ of Q which satisfies
σ(z0) = v0.

The minimal selection (well defined if Q has closed convex values) of the map Q
is given by

ξmin(z) = πQ(z)(0) for all z ∈ D. (9)

Here π stands for the operator of best approximation that is defined on K as follows:

|x − πK (x)| = d(x, K ) for all x ∈ R
n .

It is of interest to notice that the minimal selection is rarely continuous, see [30].
Next, given the control system

ż = ξ(z) + G(z)v,

v ∈ V (z),
(10)

where v takes values inRm and denotes the control, G : RN → L(Rm,RN ), and V (·)
stands for the set-valued map of constraints, define the feedback map

G(z)
.= {v ∈ V (z) | ξ(z) + G(z)v ∈ TD(z)} . (11)
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Assume that ξ and G(·) are continuous on D, then any continuous selection of the
feedback map G provides a control law that leads to a viable solution to system (10)
in D. This is so for minimal selection whenever it is continuous. Otherwise we may
use [28, Theorem 4.3.2] as follows:

Lemma 4 Assume that the feedback map G is lsc with closed convex values. Then
system (10) with feedback control v = πG(z)(0) has a locally viable solution in D.

3 A control set-valued approach

In this section, we restate the problem (3) in the context of viability theory and set-
valued analysis. Throughout the paper the control system (1) is assumed to satisfy the
permanently hypotheses below:

Functions f and ψ are continuous and of
linear growth on constraint subset Ω × U .

For the sake of conciseness, the elements of our control strategy proceeds as follows:

(i) Let ϕ be an R+-Lyapunov function in the sense of (5).
(ii) Set

Dϕ
.= {(x, y, u) ∈ Ω × U | ϕ(y, ψ(x, y, u)) ≤ 0} , (12)

and

Ωϕ
.= π1(Dϕ), (13)

where π1 denotes the mapping (x, y, u) → (x, y).
(iii) Define the feedback map given for each (x, y, u) ∈ Dϕ as follows

Gϕ(x, y, u)
.= {

v ∈ V | ( f (x, y, u), ψ(x, y, u), v − αu) ∈ TDϕ
(x, y, u)

}
,

(14)

where the control v has values in closed subset

V .=
p∏

j=1

[0, αumax
j ],

with α stands for a positive number.
(iv) Pick up a continuous selection of the map Gϕ .

Consequently, we are ready to prove the following result:

Theorem 1 Any continuous selection of the map Gϕ provides a solution of the problem
(3) for each (x0, y0) ∈ Ωϕ .
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Proof Let g be such a selection. Then, for all (x, y, u) ∈ Dϕ , the following tangential
condition holds

( f (x, y, u), ψ(x, y, u), g(x, y, u) − αu) ∈ TDϕ
(x, y, u).

According to lemma (2), the following system

ẋ = f (x, y, u), x(0) = x0
ẏ = ψ(x, y, u), y(0) = y0,
u̇ = g(x, u) − αu, u(0) = u0,

(15)

has a solution (x̄, ȳ, ū) which is viable in Dϕ , for each (x0, y0, u0) ∈ Dϕ . This
solution is global as both f and ψ possess linear growth and g is bounded. It follows
that ȳ has values in R+ and satisfies ϕ(ȳ(t), ˙̄y(t)) ≤ 0 for all t . Then, thanks to (5),
ȳ(t) → 0 when t → ∞, and thereby ū and (x̄, ȳ) satisfy condition (3a) and (3b)
respectively.

��
In consequence, we are led to design the feedback map Gϕ(·) of Eq. (14). For that

purpose we need first to compute the contingent cone TDϕ
(·). In all what follow, we

assume that both

dynamics ψ and Lyapunov
function ϕ are differentiable.

Set then for all (x, y, u) ∈ Dϕ

φ(x, y, u)
.= ϕ(y, ψ(x, y, u)). (16)

It follows that subset Dϕ given by (12) can be written as

Dϕ
.= {(x, y, u) ∈ Ω × U | φ(x, y, u) ≤ 0} . (17)

Using [29, Chapter 4] on tangent cones, we get the contingent cone of subset Ω × U
as follows

TΩ×U (x, y, u) = TΩ(x, y) × TU (u), (18)

for all (x, y, u) ∈ Ω × U , where

(θ, ρ) ∈ TΩ(x, y) ⇔ θi ≥ 0 if xi = 0 for i = 1, . . . , n,

ρ ≥ 0 if y = 0,
(19)

and

ξ ∈ TU (u) ⇔ ξi ≥ 0 if ui = 0 for i = 1, . . . , p,
ξi ≤ 0 if ui = umax

i for i = 1, . . . , p.
(20)
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Moreover, we can easily see that the qualification condition in Lemma 1 is satisfied
whenever the following conditions hold:

for all (x, y, u) ∈ Dϕ, such that φ(x, y, u) = 0,
there exists (θ, ρ, ξ) ∈ TΩ×U (x, y, u) such that :
〈∇xφ(x, y, u), θ〉 + ρ

∂φ

∂ y
(x, y, u) + 〈∇uφ(x, y, u), ξ 〉 < 0.

(21)

In the following result, we provide an expression of the contingent cone TDϕ
(·).

Lemma 5 Suppose that condition (21) is satisfied. Then, for each (x, y, u) ∈ Dϕ , we
have

(θ, ρ, ξ) ∈ TDϕ
(x, y, u) ⇔

(θ, ρ) ∈ TΩ(x, y),
ξ ∈ TU (u), and if φ(x, y, u) = 0

〈∇xφ(x, y, u), θ〉 + ρ
∂φ

∂ y
(x, y, u)

+〈∇uφ(x, y, u), ξ 〉 ≤ 0.

(22)

Proof Thanks to Lemma 1 and condition (21), we can get easily the expression (22).
��

Note that the partial differentials of φ are given on Dϕ by

∇xφ(x, y, u) = ∇xψ(x, y, u)
∂ϕ

∂z
(y, ψ(x, y, u)), (23)

∂φ

∂ y
(x, y, u) = ∂ϕ

∂ y
(y, ψ(x, y, u)) + ∂ψ

∂ y
(x, y, u)

∂ϕ

∂z
(y, ψ(x, y, u)), (24)

and

∇uφ(x, y, u) = ∇uψ(x, y, u)
∂ϕ

∂z
(y, ψ(x, y, u)). (25)

Subsequently, we need to define the following functions and maps,

�ϕ(x, y, u)
.= ∂ϕ

∂z
(y, ψ(x, y, u)) 〈∇xψ(x, y, u), f (x, y, u)〉

+
(

∂ϕ

∂ y
(y, ψ(x, y, u)) + ∂ψ

∂ y
(x, y, u)

∂ϕ

∂z
(y, ψ(x, y, u))

)

×ψ(x, y, u) − ∂ϕ

∂z
(y, ψ(x, y, u)) 〈αu,∇uψ(x, y, u)〉 , (26)

mϕ(x, y, u)
.= ∇uψ(x, y, u)

∂ϕ

∂z
(y, ψ(x, y, u)), (27)

and

Cϕ(x, y, u)
.= {v ∈ V | �ϕ(x, y, u) + 〈

mϕ(x, y, u), v
〉 ≤ 0}, (28)
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for all (x, y, u) ∈ Ω × U . In addition, we consider the assumption

xi = 0 and y ≥ 0 �⇒ fi (x, y, u) ≥ 0 for all u ∈ U ,

y = 0 and x ≥ 0 �⇒ ψ(x, y, u) ≥ 0 for all u ∈ U (29)

for i = 1, . . . , n.
Then, we are ready to determine a useful expression of the feedback map Gϕ(·)

given by (14).

Lemma 6 Under condition (21) and (29), we have for all (x, y, u) ∈ Dϕ

Gϕ(x, y, u) = V if φ(x, y, u) < 0,
Cϕ(x, y, u) if φ(x, y, u) = 0.

(30)

Proof According to (14) and Lemma 5, we get

v ∈ Gϕ(x, y, u) ⇐⇒

( f (x, y, u), ψ(x, y, u) ∈ TΩ(x, y),
v − αu ∈ TU (u) and, if φ(x, y, u) = 0 then

〈∇xφ(x, y, u), f 〉 + ψ
∂φ

∂ y
(x, y, u)

+〈∇uφ(x, y, u), v − αu〉 ≤ 0,

(31)

for each (x, y, u) ∈ Dϕ . Thanks to (19), (20) and (29), it follows that

v ∈ Gϕ(x, y, u) ⇐⇒
v ∈ V and, if φ(x, y, u) = 0 then

〈∇xφ(x, y, u), f 〉 + ψ
∂φ

∂ y
(x, y, u)

+〈∇uφ(x, y, u), v − αu〉 ≤ 0.

(32)

By considering (26), (27) and (28), we can see easily that the last expression is
equivalent to (30). ��
In what follow, we provide a result for which the problem (3) has a solution from
the whole domain Ω . For this end, we need to introduce the following map, for each
β > 0.

Cβ
ϕ (x, y, u)

.= {
v ∈ V | �ϕ(x, y, u) + 〈

mϕ(x, y, u), v
〉 ≤ −β

}
(33)

for each (x, y, u) ∈ Ω × U .

Theorem 2 Assume that, for some β > 0, the map Cβ
ϕ given by (33) has a continuous

selection, then problem (3) has a solution for each (x0, y0) ∈ Ω .

Proof Let g be such a selection of the map Cβ
ϕ . As condition (21) is satisfied, this map

has values included in Cϕ ⊂ Gϕ. Then the selection g is also a continuous selection of
Gϕ . By Theorem 1, Problem (3) has therefore solution from Ωϕ . The rest of the proof
is devoted to show that problem (3) has solution from Ω\Ωϕ .
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Now, let (x0, y0) belong to Ω\Ωϕ . Thereby φ(x0, y0, u) > 0, for all u such that
(x0, y0, u) ∈ Ω ×U . Condition (29) implies that ( f (x, y, u), ψ(x, y, u)) ∈ TΩ(x, y)
for all (x, y) ∈ Ω . Since g(x, y, u) belongs to V , then g(x, y, u) − αu ∈ TU (u). It
follows that system

ẋ = f (x, y, u), x(0) = x0,
ẏ = ψ(x, y, u), y(0) = u0,
u̇ = g(x, y, u) − αu, u(0) = u0,

admits a Ω × U-viable solution (x̄, ȳ, ū) (on horizon [0,∞) as the couple ( f , ψ)

possess linear growth and g is bounded), for all u0 such that (x0, y0, u0) ∈ Ω × U .
Let such u0 be given, we readily have

d

dt
φ(x̄(t), ȳ(t), ū(t)) = 〈∇xφ(x̄(t), ȳ(t), ū(t)), ˙̄x(t))〉 + ˙̄y(t)∂φ

∂ y
(x̄(t), ȳ(t), ū(t))

+〈 ˙̄u(t),∇uφ(x̄(t), ȳ(t), ū(t))〉,

which yields, according to Eqs. (26) and (27),

d

dt
φ(x̄(t), ȳ(t), ū(t)) = �ϕ(x̄(t), ȳ(t), ū(t)) + 〈 ˙̄u(t),mϕ(x̄(t), ȳ(t), ū(t))〉.

Whence

φ(x̄(t1), ȳ(t1), ū(t1)) = φ(x0, y0, u0) +
∫ t1

0
[�ϕ(x̄(t), ȳ(t), ū(t))

+〈g(x̄(t), ȳ(t), ū(t)),mϕ(x̄(t), ȳ(t), ū(t))〉] dt .

Since g is also a continuous selection of Cβ
ϕ , then

φ(x̄(t1), ȳ(t1), ū(t1)) ≤ φ(x0, y0, u0) − βt1.

Thereby

(x̄(t1), x̄(t1), ū(t1)) ∈ Dϕ for t1 ≥ φ(x0, y0, u0)

β
.

Let x1
.= x̄(t1), y1

.= ȳ(t1) and u1
.= ū(t1).

As a result, the use of Theorem 1 implies that system

ṡ = f (s, q, w), s(t1) = x1,
q̇ = ψ(s, q, w), q(t1) = y1,
ẇ = g(s, q, w) − αw, w(t1) = u1,

has a solution (s̄, q̄, w̄) on horizon [t1,∞), which ranges in Ω × U and satisfies

q̄(t) → 0 when t → ∞.
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Consequently, the control given by ū on [0, t1] and w̄ on (t1,∞), achieves the problem
stated in (3) from {(x0, y0)}. ��

4 On the existence of continuous selection

This section involves the sufficient conditions we need in order to prove the existence
of continuous selection of the map Cβ

ϕ as required in Theorem 2. For that purpose we
will mainly use the Micheal selection theorem cited in section 2 and we assume that

The dynamics ψ is C1 and has
linear growth on subset Ω × U .

Definition 1 Let β ≥ 0. We say that R+-Lyapunov function ϕ belongs to subset Λβ

whenever, for all (x, y, u) ∈ Dϕ , there exists v ∈ V which satisfies the following
statement

�ϕ(x, y, u) + 〈
v,mϕ(x, y, u)

〉
< −β, (34)

where functions �ϕ and mϕ are respectively given in (26) and (27).

Then we can state the following result.

Lemma 7 Let β ≥ 0 and assume that ϕ ∈ Λβ , then both maps Cβ
ϕ and Gϕ , as given,

respectively, by (33) and (30) are lsc with closed-convex valued. (note C0ϕ = Cϕ).

Proof It is obvious that Cβ
ϕ and Gϕ are closed convex valued.

To prove that Cβ
ϕ is lsc, we will rewrite it in the context of [29, Proposition 1.5.2]

in the form

Cβ
ϕ (x, y, u) = {v ∈ F̄(x, y, u) | f̄ (x, y, u, v) ∈ Ḡ(x, y, u)},

where for each (x, y, u) ∈ Dϕ , we have

F̄(x, y, u) = V, f̄ (x, y, u, v) = 〈
mϕ(x, y, u), v

〉
,

and Ḡ(x, y, u) = (−∞,−�ϕ(x, y, u) − β
]
.

Therefore, we can easily verify the hypotheses of the cited proposition as follows:

1. The map F̄ is lsc with convex values.
2. f̄ is continuous.
3. For all (x, y, u) ∈ Dϕ, the mapping v → f̄ (x, y, u, v) is affine.
4. For all (x, y, u), Ḡ(x, y, u) is convex and its interior is nonempty.
5. The graph of the map (x, y, u) ∈ Dϕ → int(Ḡ(x, y, u)) is open.
6. For all (x, y, u) ∈ Dϕ, there exists v ∈ F̄(x, y, u) such that f̄ (x, u, v) ∈

int(Ḡ(x, y, u)).
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Thanks to assumption (34), the condition (6) is satisfied. Then the map Cβ
ϕ is lsc.

Now we prove that Gϕ is lsc.
Let (xn, yn, un)n be a sequence of Dϕ that converge to (x, y, u) ∈ Dϕ and v ∈

Gϕ(x, y, u). We have to look for a sequence (vn)n that satisfies

∣∣∣∣
vn ∈ Gϕ(xn, yn, un) for each n,

and vn → v.
(35)

Suppose that φ(x, y, u) < 0. Since the function φ is continuous and (xn, yn, un) →
(x, y, u) we can consider the smallest number n0 such that

φ(xn, yn, un) < 0 for all n ≥ n0.

Then the sequence defined by

vn =
∣∣∣∣
v if n ≥ n0,
wn if n < n0,

where

wn ∈ Cϕ(xn, yn, un) for all n < n0,

merely satisfies (35) due to the fact that φ(xn, yn, un) = 0 whenever n < n0. Now
assume that φ(x, y, u) = 0, then v ∈ Cϕ(x, y, u). Since the map Cϕ is lsc, it follows
that there exists a sequence (vn)n such that vn ∈ Cϕ(xn, yn, un) for each n and vn → v.
According to (30) we get vn ∈ Gϕ(xn, yn, un) for all n, as required in (35). ��
Lemma 8 Let β ≥ 0 and ϕ belong to Λβ , then the minimal selection of the map Cβ

ϕ is
continuous.

Proof By Lemma 7 the map Cβ
ϕ is lsc. Then we can use [31, Theorem 4.1] by verifying

that the subset

Sε = {(x, y, u) ∈ Dϕ | ∃v ∈ Cβ
ϕ (x, y, u) s.t. |v|Rp ≤ ε}

is closed in Dϕ for all ε > 0. Indeed, let ((xn, yn, un))n be a sequence in Sε which
converges to (x, y, u). Then there exists a sequence (vn)n ⊂ R

p such that

|vn|Rp ≤ ε and
�ϕ(xn, yn, un) + 〈mϕ(xn, yn, un), vn〉 ≤ −β

(36)

for all n. Now, as (vn)n is bounded it has a subsequence (vm)m which converges to v.
Then by noting that �ϕ and mϕ are continuous and letting m → ∞ in (36), we get

|v|Rp ≤ ε and �ϕ(x, y, u) + 〈mϕ(x, y, u), v〉 ≤ −β.

This implies that (x, y, u) ∈ Sε and therefore Sε is closed. ��
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Then we are in a position to state and prove the following result.

Theorem 3 Let β ≥ 0 and ϕ belong to Λβ . If β = 0 then problem (3) has solution
from Ωϕ , or else it has solution from the whole domain Ω .

Proof Suppose that β = 0 and Let ϕ ∈ Λ0, then, by virtue of Lemma 7, the feedback
map Gϕ is lsc on Dϕ and has a closed convex valued. Furthermore, Lemma 3 implies
that Gϕ has a continuous selection g. We are now able to use Theorem 1 to conclude
that problem (3) has solution from Ωϕ .

Now assume that β > 0, then, the map Cβ
ϕ is lsc and has a closed convex valued (By

Lemma 7). As a result the Michael selection theorem (as stated in Lemma 3) yields a
continuous selection g of the map Cβ

ϕ . The proof ends by using Theorem 2.
��

The minimal selection of the map Gϕ of (30) is given for all (x, y, u) ∈ Dϕ by the
expression

gϕ(x, y, u)
.= πGϕ(x,y,u)(0) = 0 i f φ(x, y, u) < 0,

πCϕ(x,y,u)(0) i f φ(x, y, u) = 0,
(37)

where the map Cϕ is given by Eq. (28). Although mapping gϕ is discontinuous, we
will see in the next result that it can lead to a slow control law which solve the problem
(3).

Theorem 4 Let ϕ belong to Λ0, then for all (x0, y0, u0) ∈ Dϕ , system

ẋ = f (x, y, u), x(0) = x0,
ẏ = ψ(x, y, u), y(0) = u0,
u̇ = gϕ(x, y, u) − αu, u(0) = u0,

(38)

has a solution (x̄, ȳ, ū) : [0,∞) → Ω × U which satisfies ȳ(t) → 0 at infinity.

Proof ByLemma (7), themapGϕ is lscwith closed-convex valued. Then using Lemma
(4), system (38) has a solution (x̄, ȳ, ū) over a bounded horizon. Since the couple
( f , ψ) has a linear growth and gϕ is bounded, then the solution can be extended to
infinite horizon. Moreover, since ϕ is an R+-Lyapunov function, then ȳ goes to zero
at infinity. ��

5 Application to a controlled SIRS epidemic model

The aim of this section is to apply the approach developed in the previous sec-
tions to an epidemic model that includes control terms. We consider a deterministic
Susceptible-Infected-Recovered-(re)Susceptible (SIRS) model, where the total popu-
lation, denoted N , is divided into three compartments:

– Susceptible (S): healthy individuals who can become infected as a result of their
interactions with infected individuals;
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– Infectious (I ): individuals who are infected with the disease and are able of trans-
mitting the infection to susceptible individuals;

– Recovered (R): individuals who were previously infected and recover.

The SIRS model is widely used to model several diseases, such as influenza and
malaria, which confer temporary immunity; the recovered individuals lose immunity
after a while and become susceptible again. This model is formulated based on the
following assumptions

– The disease incubation is negligible, in this case, once infected, each susceptible
individual becomes infectious instantaneously;

– All recruitment is into the susceptible compartment and occur at a constant rate
Λ;

– The natural death rate, denoted a, is constant across all compartments;
– The disease is assumed to be fatal for infectious individuals, that is why we define
additional death rate c;

– The transmission of the disease occurs following an adequate contact between a
susceptible and infectious. Due to the non-linear contact dynamics in the popu-

lation, we use the incidence function b
SI

N
to indicate successful transmission of

the disease, where b denotes the effective contact rate with infectious individuals
in compartment I ;

– The rate of loss of immunity is e;
– The population size is constant.

The dynamics of our model is governed by the following non-linear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ = Λ − b
SI

N
− aS + eR,

İ = b
SI

N
− (a + c + d)I ,

Ṙ = d I − (a + e)R,

(39)

with S(0) = S0, I (0) = I0 and R(0) = R0.
It is well known that treatment, education and awareness campaign are an important

and effective method to control and prevent the spread of various epidemics. Hence,
we investigate the impact of these control measures on the spread of an infectious
disease by introducing in the system (39) two controls u1 and u2 such as

– u1: represents the effort of preventing susceptible individuals frombecoming infec-
tious individuals. This effort includes awareness program, isolation and any other
distancing measurement that can limit contacts between susceptible and infectious
people;

– u2: represents screening and treatment efforts.
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So our model with controls is given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ = Λ − (1 − u1)b
SI

N
− aS + eR,

İ = (1 − u1)b
SI

N
− (a + c + d)I − u2 I ,

Ṙ = d I − (a + e)R + u2 I ,

(40)

with

S ≥ 0, I ≥ 0, R ≥ 0 and 0 ≤ ui ≤ umax
i ≤ 1 f or i = 1, 2.

Let x = (x1, x2)′
.= (S, R)′, y .= I and u = (u1, u2). We can see that the model (40)

satisfies the general form given by system (1), with the dynamic (1a) given as follows

f (x, y, u)
.=

(
Λ − (1 − u1)b

x1y

N
− ax1 + ex2

dy − (a + e)x2 + u2y

)
(41)

and the infectious dynamic (1b) is given by

ψ(x, y, u)
.= (1 − u1)b

x1y

N
− (a + c + d + u2)y, (42)

for each (x, y, u) ∈ Ω × U , where

Ω = R
2+ × R+ and U =

2∏

i=1

[0, umax
i ].

It can be easy to see that both functions f and ψ are differentiable. In addition, the
condition (29), which gives us the positivity of the model’s solutions, is also satisfied.
On the other hand, the global solution exist since both dynamics f andψ are bounded.
In this case, the condition of linear growth is not required.

A convenientR+-Lyapunov function ϕ, defined in (5) and which satisfies condition
(21), can be given by

ϕ(y, z)
.= z + μy, for all (y, z) ∈ R+ × R, with (μ > 0).

Indeed, if a C1 function h : R+ → R+ satisfies: ϕ(h(t), ḣ(t)) ≤ 0 for all t , then

ḣ(t) + μh(t) ≤ 0, for all t ≥ 0.

Using a simple Gronwall inequality, we get h(t) → 0 at infinity. Now let us express
the function φ of (16) we get

φ(x, y, u) = ψ(x, y, u) + μy, for all (x, y, u) ∈ Ω × U ,

and let Dϕ
.= {(x, y, u) | φ(x, y, u) ≤ 0} and Ωϕ = π1(Dϕ).
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Table 1 Parameters description and values

Parameter Description Value References

a Natural death rate 0.00946 [32]

N Total population size 20,000 Assumed

Λ Recruitment rate aN Assumed

b Transmission rate 0.19 [32]

c Disease induced death rate 0.0353 [32]

d Recovery rate 0.0447 [32]

e Lose of immunity rate 0.23 [33]

To show the efficiency of our approach we consider three scenarios. For each
scenario and in order to compute the regulation map Cβ

ϕ as expressed in Eq. (33) we
first give expressions of the functions �ϕ and mϕ , given respectively by Eq. (26) and
(27).

All simulations are performed using MATLAB with parameter values given
in Table 1. The numerical results are obtained for several initial conditions cor-
responding to both cases where (x0, y0) ∈ Ω\Ωϕ and (x0, y0) ∈ Ωϕ . It
should be noted that (x0, y0) ∈ Ω\Ωϕ refers to when the disease starts to
spread in the population, a large part of the population is healthy and the num-
ber of infections has not yet peaked. (x0, y0) ∈ Ωϕ is devoted to describing
an advanced stage of the epidemic where the number of infected people is
quite large. For the first case, where (x0, y0) ∈ Ω\Ωϕ , we use the five ini-
tial conditions (3500, 5500, 11,000), (3000, 5000, 12,000), (2500, 4500, 13,000),
(2000, 4000, 14,000) and (1500, 3500, 15,000). In the second case, the initial val-
ues are chosen as follows: (3500, 5500, 11,000), (3000, 5000, 12,000), (2500, 4500,
13,000), (2000, 4000, 14,000) and (1500, 3500, 15,000).

5.1 First scenario: prevention

Given the major role of contact in transmitting infectious disease from infectious
individuals to susceptible people and the importance of prevention programs in limiting
the number of newcases,wepropose a control strategybasedon the controlu1,whereas
the control u2 is set to zeros. In this case, the expressions of functions �ϕ and mϕ are
given by

�ϕ(x, y, u) = (1 − u1)b
y

N

(
Λ − ax1 − (1 − u1)b

x1y

N
+ ex2

)

+ y
(
(1 − u1)b

x1
N

− (a + c + d)
) (

(1 − u1)b
x1
N

− (a + c + d) + μ
)

+ αu1b
x1y

N
, (43)

mϕ(x, y, u) = −b
x1y

N
. (44)
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Fig. 1 Cases when the control u1 is applied alone with five initial conditions and (x0, y0) ∈ Ω\Ωϕ . a
Susceptible individuals (S). b Infected individuals (I). c The function φ

Then the continuous selection, of the map Cβ
ϕ , that provides a solution of the problem

(3) can be expressed as

g(x, y, u) = min

(
αumax

1 ,max

(
0,−�ϕ + β

mϕ

))
(45)

with β > 0 if (x0, y0) ∈ Ω\Ωϕ and β = 0 otherwise.
In Figs. 1 and 2 we depict the evolution over time of the susceptible individuals

S, the infected individuals I and the function φ in the uncontrolled case and when
the control u1 is considered. We use several initial values and we consider both cases
(x0, y0) ∈ Ω\Ωϕ and (x0, y0) ∈ Ωϕ . In Fig. 1a, it is observed that the number of
S decreases sharply when there is no control, while in presence of the control u1 we
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Fig. 2 Casewhen the control u1 is applied alonewith five initial conditions and (x0, y0) ∈ Ωϕ .aSusceptible
individuals (S). b Infected individuals (I). c The function φ

notice that there is a decrease only during the first ten days and then the number of
the susceptible individuals starts to increase. Figure 1b shows a constant increase in
the number of infected persons during the first few days followed by a slight decrease
when there is no control, but at the end of the control period we can see a clear
difference between the case with and without control. In Fig. 2a, b, it can be seen
that the prevention control u1 significantly reduces the number of infected people and
increases the number of healthy people. The solutions show a decrease in the number
of infections of up to 96% at the end of the control period. Also, it should be noted
that the control u1 has a great impact on the dynamics of the function φ. Indeed, when
(x0, y0) ∈ Ω\Ωϕ the control u1 leads the function φ to be negative from a certain
time t1. Otherwise, when (x0, y0) ∈ Ωϕ, the function φ remains negative during the
full control period.
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5.2 Second scenario: screening and treatment

In this case, we propose to provide a treatment for the infected people and facilitate
the access to therapeutic programs. Thus, in this scenario we set u1 to zero and we
consider only the control u2. The expressions of functions �ϕ and mϕ are given by

�ϕ(x, y, u) = b
y

N

(
Λ − ax1 − b

x1y

N
+ ex2

)
(46)

+ y
(
b
x1
N

− (a + c + d)
) (

b
x1
N

− (a + c + d) + μ
)

+ αu2y,

mϕ(x, y, u) = −y. (47)

Thereby the continuous selection of the map Cβ
ϕ is given by

g(x, y, u) = min

(
αumax

2 ,max

(
0,−�ϕ + β

mϕ

))
(48)

with β > 0 if (x0, y0) ∈ Ω\Ωϕ and β = 0 otherwise.
Figures 3 and 4 display the solutions of S, I and φ, without control and when only

the control u2 is applied. Compared to the uncontrolled case, there is a steady decrease
in the number of the infected individuals. At the end of the control period, the number
of I decreases by 100%.With this scenario, we observe a clear decrease in the number
of infections from the beginning of the control program whereas in the first scenario
there is certainly a regression in the number of infections but more slowly. So in terms
of reducing the number of I , the control u2 is a more effective way of eliminating the
disease than u1. Also, it should be noted that the control u2 has the same effect on the
function φ as the control u1.

5.3 Third scenario: combining prevention and treatment

Let us now investigate the effect of combining all controls. With this approach none
of the controls is set to zero. In this case, the expressions of functions �ϕ and mϕ are
given by

�ϕ(x, y, u) = (1 − u1)b
y

N

(
Λ − ax1 − (1 − u1)b

x1y

N
+ ex2

)
(49)

+ y
(
(1 − u1)b

x1
N

− (a + c + d + u2)
) (

(1 − u1)b
x1
N

− (a + c + d + u2) + μ
)

+ α1u1b
x1y

N
+ α2u2y,

mϕ(x, y, u) = [
mϕ,1 mϕ,2

]′ =
[
−b

x1y

N
− y

]′
. (50)

Then the continuous selection, of the Cβ
ϕ , that provides a solution of the problem (3)

can be expressed as
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Fig. 3 Cases when the control u2 is applied alone with five initial conditions and (x0, y0) ∈ Ω\Ωϕ . a
Susceptible individuals (S). b Infected individuals (I). c The function φ

g(x, y, u) =
(
g1(x, y, u)

g2(x, y, u)

)
(51)

where,

g1(x, y, u) = min

(
α1u

max
1 ,max

(
0,−�ϕ + β

2mϕ,1

))
,

g2(x, y, u) = min

(
α2u

max
2 ,max

(
0,−�ϕ + β

2mϕ,2

))
,

with β > 0 if (x0, y0) ∈ Ω\Ωϕ and β = 0 otherwise.
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Fig. 4 Casewhen the control u2 is applied alonewith five initial conditions and (x0, y0) ∈ Ωϕ .aSusceptible
individuals (S). b Infected individuals (I). c The function φ

With this scenario, our results show that combining treatment and prevention mea-
surements can lead to a decrease in the number of infected individuals, an illustrative
example is given in Fig. 5a, b. Here, the major advantage of this combination is that
less treatment effort is required when it is accompanied by preventive measures. One
can observe a significant difference in u2 when it is used alone (Fig. 6a) and when it
is used with u1 (Fig. 6b). It can be inferred that in some cases where screening and
treating infectious individuals can be more expensive, good preventive measurements
with less effort of treatment can also reduce the number of infected people.

Finally, the results obtained in this application to the SIRS model show the effec-
tiveness of our approach. In the three proposed scenarios, we note that the control
terms obtained, allow the number of infected people to tend to zero at a finite time.
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Fig. 5 Infected individuals without control and when controls u1 and u2 are all used. a Case (x0, y0) ∈
Ω\Ωϕ . b Case (x0, y0) ∈ Ωϕ
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Fig. 6 The control u2 when used alone and when it is coupled with u1. a The control u2 when used alone.
b The control u2 when combined with u1

6 Conclusion and future research

Thiswork contributes to a growing literature on controlling epidemics spread.We have
proposed a unified approach based on viability theory and set-valued analysis to deal
with a control problem of a general class of epidemiological models. We have estab-
lished theoretical results that show the existence and give the expression of continuous
selections used to characterize our controls. The great interest of our approach is the
simplicity of deriving the explicit formulas of the controls via continuous selections
of adequately designed regulation map, unlike to the optimal control approach, which
requires showing the existence of the optimal solution (control and state), and solving
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the optimality system consisting of the state system and the adjunct system that can be
hard to solve. As an application, we considered a SIRS epidemic model with two con-
trols whose expressions are given via selections of appropriately designed feedback
map. These controls proved effective in reducing the number of infected individuals,
either when used separately or when used together. Finally, as natural direction for our
future works, we will propose extensions of our method to a class of epidemiological
models where the dynamics are non-affine with respect to the control variable and also
to control problems in the case of spatiotemporal epidemic models.
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