Skip to main content
Log in

Description and analysis of a mathematical model of population growth of Aedes aegypti

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This article proposes a mathematical model based on ordinary nonlinear differential equations that describes the dynamics of population growth of the mosquito Aedes aegypti throughout its life cycle. Then, a modification is made to the model by implementing a time delay, initially constant and then distributed over time. In addition, h, the population growth threshold, is established, the equilibrium points (trivial equilibrium, coexistence equilibrium) of the population are found and an analysis of local stability of the coexistence equilibrium is performed. If \(h>1\), this results in the population of adult aquatic mosquitoes persisting in the environment, approaching a equilibrium of coexistence, regardless of whether the time delay is considered or not. Finally, numerical simulations are carried out using Matlab software using the functions ode45 and dde23, with a value of \( h>1 \), which allow the solutions of the initial model of ordinary differential equations to be compared to the solutions when the delay is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, B., Kapan, D.: Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PloS one (2009). https://doi.org/10.1371/journal.pone.0006763

    Article  Google Scholar 

  2. Al-Shami, S.A., Mahyoub, J.A., Hatabbi, M., Ahmad, A.H., Rawi, C.S.M.: An update on the incidence of dengue gaining strength in Saudi Arabia and current control approaches for its vector mosquito. Parasites Vectors (2014). https://doi.org/10.1186/1756-3305-7-258

    Article  Google Scholar 

  3. Butcher, J.C.: Numerical methods for ordinary differential equations in the 20th century. J. Comput. Appl. Math. 125(1), 1–29 (2000)

    Article  MathSciNet  Google Scholar 

  4. Cao, Y.: Bifurcations in an internet congestion control system with distributed delay. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2018.10.093

    Article  MathSciNet  MATH  Google Scholar 

  5. Carvalho, S.A., da Silva, S.O., da Charret, I.C.: Mathematical modeling of dengue epidemic: control methods and vaccination strategies. Theory Biosci. (2019). https://doi.org/10.1007/s12064-019-00273-7

    Article  Google Scholar 

  6. Diéguez Fernández, L., Cruz Pineda, C., Acao Francois, L.: Aedes (St.) aegypti: relevancia entomoepidemiológica y estrategias para su control. Revista Archivo Médico de Camagüey. 15(3), 610–625 (2011)

    Google Scholar 

  7. Estrella-González, A.G., García-Almeida, G.E., Avila-Vales, E.J.: Estabilidad Local de Sistemas de Ecuaciones Diferenciales Ordinarias con Retardo y Aplicaciones. Abstr. Appl. Mag. 8, 38–60 (2014)

    Google Scholar 

  8. Fargue, M.: Réducibilité des systems hereditaires a des systemes dynamiques. CR Acad. Sci. Paris B. 277, 471–473 (1973)

    MathSciNet  Google Scholar 

  9. Giallonardo, F., Holmes, E.C.: Exploring host-patho. PLoS pathog. (2015). https://doi.org/10.1371/journal.ppat.1004865

    Article  Google Scholar 

  10. Gürtler, R.E., Vezzani, D., Carbajo, A.E., Cardinal, M.V., Garelli, F.M., Gaspe, M.S.: El dengue, el mosquito Aedes aegypti y la prevención. Boletín Biológica. 10, 10–16 (2009)

    Google Scholar 

  11. Iturbe-Ormaetxe, I., Walker, T., O’Neill, S.L.: Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 12(6), 508–518 (2011)

    Article  Google Scholar 

  12. Morgan, R.: Linearization and stability analysis of nonlinear problems. Rose-Hulman Undergrad. Math. J. 16(2), 5 (2015)

    MathSciNet  Google Scholar 

  13. Multerer, L., Smith, T., Chitnis, N.: Modeling the impact of sterile males on an Aedes aegypti population with optimal control. Math. Biosci. (2019). https://doi.org/10.1016/j.mbs.2019.03.003

    Article  MathSciNet  MATH  Google Scholar 

  14. Murray, J.D.: Mathematical biology I: an introduction. Springer, New York (2002)

    Book  Google Scholar 

  15. Nelson, M.J.: Aedes aegypti: biología y ecología. Organización Panamericana de la Salud, Washington D.C (1986)

    Google Scholar 

  16. Organización Panamericana de la Salud (OMS): Programa Especial para la Investigación y Capacitación de Enfermedades Tropicales (TDR). Dengue: Guías para el Diagnóstico, Tratamiento, Prevención y Control, OMS, Bolivia (2009)

  17. Perko, L.: Differential equations and dynamical systems. Springer, New York (2013)

    MATH  Google Scholar 

  18. Pliego-Pliego, E., Vasilieva, O., Velázquez-Castro, J., Collar, A.F.: Control strategies for a population dynamics model of Aedes aegypti with seasonal variability and their effects on dengue incidence. Appl. Math. Model. (2019). https://doi.org/10.1016/j.apm.2019.12.025

    Article  Google Scholar 

  19. Quispe, E., Carbajal, A., Gozzer, J., Moreno, B.: Ciclo biológico y Tabla de Vida de Aedes aegypti, en laboratorio: Trujillo (Perú). Revista REBIOLEST. 3(1), 91–101 (2015)

    Google Scholar 

  20. Supriatna, A.K., Anggriani, N.: System dynamics model of wolbachia infection in dengue transmission. Proc. Eng. (2012). https://doi.org/10.1016/j.proeng.2012.10.002

    Article  Google Scholar 

  21. Ross, T.M.: Dengue virus. Clin. Lab. Med. 30(1), 149–160 (2010)

    Article  Google Scholar 

  22. Wang, X., Zou, X.: Threshold dynamics of a temperature-dependent stage-structured mosquito population model with nested delays. Bull. Math. Biol. (2018). https://doi.org/10.1007/s11538-018-0447-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, H.M., Boldrini, J.L., Fassoni, A.C., Freitas, L.F., Gomez, M.C., de Lima, K.K., Andrade, V.R., Freitas, A.R.: Fitting the incidence data from the city of Campinas, Brazil, based on dengue transmission modellings considering time-dependent entomological parameters. PloS one (2016). https://doi.org/10.1371/journal.pone.0152186

    Article  Google Scholar 

  24. Yang, H.M., da Graça Macoris, M.D.L., Galvani, K.C., Andrighetti, M.T.M.: Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings. Biosystems (2011). https://doi.org/10.1016/j.biosystem.2010.11.002

    Article  Google Scholar 

  25. Zhang, M., Lin, Z.: A reaction-diffusion-advection model for Aedes aegypti mosquitoes in a time-periodic environment. Nonlinear Anal. Real World Appl. (2019). https://doi.org/10.1016/j.nonrwa.2018.09.014

    Article  MathSciNet  MATH  Google Scholar 

  26. Zou, L., Chen, J., Feng, X., Ruan, S.: Analysis of a dengue model with vertical transmission and application to the 2014 Dengue outbreak in Guangdong Province. China. Bull. Math. Biol. (2018). https://doi.org/10.1007/s11538-018-0480-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Basic Sciences of the University CESMAG and the Department of Mathematics and Statistics of the University of Nariño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Pulecio-Montoya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulecio-Montoya, A.M., López-Montenegro, L.E. & Medina-García, J.Y. Description and analysis of a mathematical model of population growth of Aedes aegypti. J. Appl. Math. Comput. 65, 335–349 (2021). https://doi.org/10.1007/s12190-020-01394-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01394-9

Keywords

Mathematics Subject Classification

Navigation