Skip to main content
Log in

An improved finite difference/finite element method for the fractional Rayleigh–Stokes problem with a nonlinear source term

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an improved finite difference/finite element method for the fractional Rayleigh–Stokes problem with a nonlinear source term. The second-order backward differentiation formula (BDF2) and weighted and shifted Grünwald-Letnikov difference (WSGD) formula are employed to discretize first-order time derivative and the time fractional-order derivative, respectively. Moreover, a linearized difference scheme is proposed to approximate the nonlinear source term. Together with the Galerkin finite element method in the space direction, we present a fully discrete scheme for the fractional Rayleigh–Stokes problem with a nonlinear source term. Based on a novel analytical technique, the stability and the convergence accuracy in \(L^{2}\)-norm with \(O(\tau ^{2}+h^{k+1})\) are derived in detail, and this convergence order is higher than the previous work. Finally, some numerical examples are presented to validate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)

    Article  MathSciNet  Google Scholar 

  2. Song, D., Jing, T.: Study on the constitutive with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application. Rheol. Acta. 37, 512–517 (1998)

    Article  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland, New York (2006)

    MATH  Google Scholar 

  4. Meerschaert, M.M., Zhang, Y., Baeumerc, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)

    Article  MathSciNet  Google Scholar 

  5. Agrawal, O.P.: Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 83, 265–274 (2003)

    Article  MathSciNet  Google Scholar 

  6. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  7. Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Phys. A 370, 114–118 (2006)

    Article  MathSciNet  Google Scholar 

  8. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138 (2000)

    Article  MathSciNet  Google Scholar 

  9. Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P.: Limit theorem for continuous-time random walks with two time scales. J. Appl. Probab. 41, 455–466 (2004)

    Article  MathSciNet  Google Scholar 

  10. Abbaszadeh, M.: Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl. Math. Lett. 88, 179–185 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ji, C.C., Sun, Z.Z.: An unconditionally stable and high-order convergent difference scheme for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Numer. Math. Theor. Meth. Appl. 10, 597–613 (2017)

    Article  MathSciNet  Google Scholar 

  12. Shen, F., Tan, W.C., Zhao, Y., Masuoka, T.: The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real. 7, 1072–1080 (2006)

    Article  MathSciNet  Google Scholar 

  13. Xue, C.F., Nie, J.X.: Exact solutions of Stokes’ first problem for heated generalized Burgers’ fluid in a porous half-space. Nonlinear Anal. Real. 9, 1628–1637 (2008)

    Article  MathSciNet  Google Scholar 

  14. Xue, C.F., Nie, J.X.: Exact solutions of the Rayleigh–Stokes problem for a heated generalized second grade fluid in a porous half-space. Appl. Math. Model. 33, 524–531 (2009)

    Article  MathSciNet  Google Scholar 

  15. Jamil, M., Rauf, A., Zafar, Khan A.A: New exact analytical solutions for Stokes first problem of Maxwell fluid with fractional derivative approach. Comput. Math. Appl. 62, 1013–1023 (2011)

    Article  MathSciNet  Google Scholar 

  16. Chen, C.M., Liu, F., Anh, V., Turner, I.: A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math. 223, 777–789 (2009)

    Article  MathSciNet  Google Scholar 

  17. Chen, C.M., Liu, F., Anh, V.: Numerical analysis of the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl. Math. Comput. 204, 340–351 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Wu, C.H.: Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Appl. Numer. Math. 59, 2571–2583 (2009)

    Article  MathSciNet  Google Scholar 

  19. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput. Methods Appl. Mech. Eng. 264, 163–177 (2013)

    Article  MathSciNet  Google Scholar 

  20. Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)

    Article  MathSciNet  Google Scholar 

  21. Dehghan, M., Abbaszadeh, M.: A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng. Comput. 33, 587–605 (2017)

    Article  Google Scholar 

  22. Chen, Y., Chen, C.M.: Numerical algorithm for solving the Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Numer. Algor. 77, 939–953 (2018)

    Article  MathSciNet  Google Scholar 

  23. Hasan, M.T., Xu, C.J.: Numerical approximation for MHD flows of generalized viscoelastic fluid. Appl. Anal. 98, 581–599 (2019)

    Article  MathSciNet  Google Scholar 

  24. Chen, C.M., Liu, F.W., Turner, I., Anh, V.: Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’ first problem for a heated generalized second grade fluid. Comput. Math. Appl. 62, 971–986 (2011)

    Article  MathSciNet  Google Scholar 

  25. Chen, C.M., Liu, F.W., Burrage, K., Chen, Y.: Numerical methods of the variable-order Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative. IMA J. Appl. Math. 78, 924–944 (2013)

    Article  MathSciNet  Google Scholar 

  26. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  27. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  28. Ženíšek, A.: Sobolev Spaces and Their Applications in the Finite Element Method. Vutium Press, Brno (2005)

    MATH  Google Scholar 

  29. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differ. Equ. 32, 970–1001 (2016)

    Article  MathSciNet  Google Scholar 

  30. Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  Google Scholar 

  31. Wang, Z.B., Vong, S.W.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  32. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  33. Li, Y.F., Wang, D.L.: Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term. Int. J. Comput. Math. 94, 821–840 (2017)

    Article  MathSciNet  Google Scholar 

  34. Sun, Z.Z., Gao, G.H.: Numerical Methods for Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

  35. Jin, B.T., Lazarov, R., Zhou, Z.: Two schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2014)

    Article  MathSciNet  Google Scholar 

  36. Li, M., Zhao, J.K., Huang, C.M., Chen, S.C.: Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data. J. Sci. Comput. 81, 1823–1859 (2019)

    Article  MathSciNet  Google Scholar 

  37. Li, M., Shi, D.Y., Pei, L.F.: Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation. Appl. Numer. Math. 151, 141–160 (2020)

    Article  MathSciNet  Google Scholar 

  38. Dehghan, M., Abbaszadeh, M.: Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput. Math. Appl. 73, 1270–1285 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 11671321, 11971387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Z., Wang, X. & Ouyang, J. An improved finite difference/finite element method for the fractional Rayleigh–Stokes problem with a nonlinear source term. J. Appl. Math. Comput. 65, 451–479 (2021). https://doi.org/10.1007/s12190-020-01399-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01399-4

Keywords

Navigation