Abstract
A complex neutrosophic set is a useful model to properly handle incomplete information of periodic nature. This is characterized by three complex-valued components: truth, indeterminacy and falsity membership functions, whose range is extended from [0, 1] to unit circle in the complex plane. In this article, we define the notion of generalized complex neutrosophic graphs of type 1 and discuss certain of their properties, including regularity and completeness. Further, we describe these properties by several examples and present some of their interesting results. Moreover, we define the score function and accuracy function of complex neutrosophic sets. We describe decision making analysis based on generalized complex neutrosophic graphs of type 1. Finally, we highlight the significance of our proposed model by comparative analysis with the already existing models.













Similar content being viewed by others
References
Akram, M.: Single-Valued Neutrosophic Graphs. Infosys Science Foundation Series in Mathematical Sciences. Springer, New York (2018). https://doi.org/10.1007/978-981-13-3522-8
Akram, M., Shahzadi, S.: Neutrosophic soft graphs with applicatioon. J. Intell. Fuzzy Syst. 32(1), 841–858 (2017)
Akram, M., Saba, S.: Certain single-valued neutrosophic graphs. J. Fuzzy Math. 26(3), 593–614 (2017)
Akram, M., Saba, S., Bijan, D.: New concepts in neutrosophic graphs with application. J. Appl. Math. Comput. 57(12), 279–302 (2018)
Akram, M., Sattar, A.: Competition graphs under complex Pythagorean fuzzy information. J. Appl. Math. Comput. 63, 543–583 (2020)
Akram, M., Naz, S.: A novel decision-making approach under complex Pythagorean fuzzy environment. Math. Comput. Appl. 24(3), 73 (2019)
Akram, M., Bashir, A., Samanta, S.: Complex pythagorean fuzzy planar graphs. J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s40819-020-00817-2
Alkouri, A.M., Salleh, A.R.: Complex intuitionistic fuzzy sets. AIP Conf. Proc. 14, 464–470 (2012)
Alkouri, A.M., Salleh, A.R.: Complex Atanassove’s intuitionistic fuzzy relation. Abstr. Appl. Anal. 2013, Article ID 287382 (2013). https://doi.org/10.1155/2013/287382.
Ali, M., Samarandache, F.: Complex neutrosophic set. Neural Comput. Appl. 28(7), 1817–1834 (2017). https://doi.org/10.1007/s00521-015-2154-y
Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
Broumi, S., Talea, M., Bakali, A., Smarandache, F.: Interval Valued Neutrosophic Soft Graphs. New Trends in Neutrosophic Theory and Applications 1. Pons Editions Brussels, Belgium (2018)
Broumi, S., Bakali, A., Talea, M., Smarandache, F.: Complex neutrosophic graphs of type 1. In: Proceedings of 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA). Gdynia Maritime University, Gdynia, Poland, pp. 432–437 (2017)
Bhattacharya, P.: Some remarks on fuzzy graphs. Pattern Recognit. Lett. 6, 297–302 (1987)
Faruk, K., Bijan, D.: Properties of single-valued neutrosophic graphs. J. Intell. Fuzzy Syst. 34(1), 57–79 (2018)
Kaufmann, A.: Introduction a la Thiorie des Sous-Ensemble Flous. Masson et Cie 1 (1973)
Luqman, A., Akram, M., Al-Kenani, A.N., Alcantud, J.C.R.: A study on hypergraph representations of complex fuzzy information. Symmetry 11(11), 1381 (2019)
Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs. Physica Verlag, Heidelberg (2001)
Parvathi, R., Karunambigai, M.G.: Intuitionistic fuzzy graphs. In: Reusch, B. (ed.) Computational Intelligence, Theory and Applications. Springer, Berlin (2006)
Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 10(2), 171–186 (2002)
Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. IEEE Trans. Fuzzy Syst. 11(4), 450–461 (2003)
Rosenfeld, A.: Fuzzy Graphs, Fuzzy Sets and Their Applications, pp. 77–95. Academic Press, New York (1975)
Samanta, S., Sarkar, B.: A study on generalized fuzzy graphs. J. Intell. Fuzzy Syst. 35(3), 3405–3412 (2018)
Samanta, S., Sarkar, B., Shin, D., Pal, M.: Completeness and regularity of generalized fuzzy graphs. Springerplus 5(1), 1979–1990 (2016)
Smarandache, F.: A Unifying Field in Logics: Neutrosophic Logic. American Research Press, Rehoboth (1995)
Smarandache, F.: Neutrosophic set—a generalization of the intuitionistic fuzzy set. In: Granular Computing 2006 IEEE International Conference, pp. 38–42 (2006). https://doi.org/10.1109/GRC.2006.1635754
Thirunavukarasu, P., Suresh, R., Viswanathan, K.K.: Energy of a complex fuzzy graph. Int. J. Math. Sci. Eng. Appl. 10, 243–248 (2016)
Wang, H., Smarandache, F., Zhang, Y.Q., Sunderraman, R.: Single-valued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010)
Yaqoob, N., Gulistan, M., Kadry, S., Wahab, H.: Complex intuitionistic fuzzy graphs with application in cellular network provider companies. Mathematics 7, 35 (2019)
Yaqoob, N., Akram, M.: Complex neutrosophic graphs. Bull. Comput. Appl. Math. 6, 85–109 (2018)
Yazdanbakhsh, O., Dick, S.: A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. 338, 1–22 (2018)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zhan, J., Masood, H., Akram, M.: Novel decision-making algorithms based on intuitionistic fuzzy rough environment. Int. J. Mach. Learn. Cybernet. 10(6), 1459–1485 (2019)
Zhan, J., Akram, M., Sitara, M.: Novel decision-making method based on bipolar neutrosophic information. Soft. Comput. 23(20), 9955–9977 (2019)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Siddique, S., Ahmad, U. & Akram, M. A study on generalized graphs representations of complex neutrosophic information. J. Appl. Math. Comput. 65, 481–514 (2021). https://doi.org/10.1007/s12190-020-01400-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-020-01400-0
Keywords
- Generalized complex neutrosophic graphs of type 1
- Score function
- Accuracy function
- Algorithm
- Comparative analysis