Skip to main content
Log in

A study on generalized graphs representations of complex neutrosophic information

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A complex neutrosophic set is a useful model to properly handle incomplete information of periodic nature. This is characterized by three complex-valued components: truth, indeterminacy and falsity membership functions, whose range is extended from [0, 1] to unit circle in the complex plane. In this article, we define the notion of generalized complex neutrosophic graphs of type 1 and discuss certain of their properties, including regularity and completeness. Further, we describe these properties by several examples and present some of their interesting results. Moreover, we define the score function and accuracy function of complex neutrosophic sets. We describe decision making analysis based on generalized complex neutrosophic graphs of type 1. Finally, we highlight the significance of our proposed model by comparative analysis with the already existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akram, M.: Single-Valued Neutrosophic Graphs. Infosys Science Foundation Series in Mathematical Sciences. Springer, New York (2018). https://doi.org/10.1007/978-981-13-3522-8

    Book  Google Scholar 

  2. Akram, M., Shahzadi, S.: Neutrosophic soft graphs with applicatioon. J. Intell. Fuzzy Syst. 32(1), 841–858 (2017)

    Article  Google Scholar 

  3. Akram, M., Saba, S.: Certain single-valued neutrosophic graphs. J. Fuzzy Math. 26(3), 593–614 (2017)

    Google Scholar 

  4. Akram, M., Saba, S., Bijan, D.: New concepts in neutrosophic graphs with application. J. Appl. Math. Comput. 57(12), 279–302 (2018)

    Article  MathSciNet  Google Scholar 

  5. Akram, M., Sattar, A.: Competition graphs under complex Pythagorean fuzzy information. J. Appl. Math. Comput. 63, 543–583 (2020)

    Article  MathSciNet  Google Scholar 

  6. Akram, M., Naz, S.: A novel decision-making approach under complex Pythagorean fuzzy environment. Math. Comput. Appl. 24(3), 73 (2019)

    MathSciNet  Google Scholar 

  7. Akram, M., Bashir, A., Samanta, S.: Complex pythagorean fuzzy planar graphs. J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s40819-020-00817-2

    Article  MATH  Google Scholar 

  8. Alkouri, A.M., Salleh, A.R.: Complex intuitionistic fuzzy sets. AIP Conf. Proc. 14, 464–470 (2012)

    Article  Google Scholar 

  9. Alkouri, A.M., Salleh, A.R.: Complex Atanassove’s intuitionistic fuzzy relation. Abstr. Appl. Anal. 2013, Article ID 287382 (2013). https://doi.org/10.1155/2013/287382.

  10. Ali, M., Samarandache, F.: Complex neutrosophic set. Neural Comput. Appl. 28(7), 1817–1834 (2017). https://doi.org/10.1007/s00521-015-2154-y

    Article  Google Scholar 

  11. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  Google Scholar 

  12. Broumi, S., Talea, M., Bakali, A., Smarandache, F.: Interval Valued Neutrosophic Soft Graphs. New Trends in Neutrosophic Theory and Applications 1. Pons Editions Brussels, Belgium (2018)

    Google Scholar 

  13. Broumi, S., Bakali, A., Talea, M., Smarandache, F.: Complex neutrosophic graphs of type 1. In: Proceedings of 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA). Gdynia Maritime University, Gdynia, Poland, pp. 432–437 (2017)

  14. Bhattacharya, P.: Some remarks on fuzzy graphs. Pattern Recognit. Lett. 6, 297–302 (1987)

    Article  Google Scholar 

  15. Faruk, K., Bijan, D.: Properties of single-valued neutrosophic graphs. J. Intell. Fuzzy Syst. 34(1), 57–79 (2018)

    Article  Google Scholar 

  16. Kaufmann, A.: Introduction a la Thiorie des Sous-Ensemble Flous. Masson et Cie 1 (1973)

  17. Luqman, A., Akram, M., Al-Kenani, A.N., Alcantud, J.C.R.: A study on hypergraph representations of complex fuzzy information. Symmetry 11(11), 1381 (2019)

    Article  Google Scholar 

  18. Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs. Physica Verlag, Heidelberg (2001)

    MATH  Google Scholar 

  19. Parvathi, R., Karunambigai, M.G.: Intuitionistic fuzzy graphs. In: Reusch, B. (ed.) Computational Intelligence, Theory and Applications. Springer, Berlin (2006)

    Google Scholar 

  20. Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 10(2), 171–186 (2002)

    Article  Google Scholar 

  21. Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. IEEE Trans. Fuzzy Syst. 11(4), 450–461 (2003)

    Article  Google Scholar 

  22. Rosenfeld, A.: Fuzzy Graphs, Fuzzy Sets and Their Applications, pp. 77–95. Academic Press, New York (1975)

    Google Scholar 

  23. Samanta, S., Sarkar, B.: A study on generalized fuzzy graphs. J. Intell. Fuzzy Syst. 35(3), 3405–3412 (2018)

    Article  Google Scholar 

  24. Samanta, S., Sarkar, B., Shin, D., Pal, M.: Completeness and regularity of generalized fuzzy graphs. Springerplus 5(1), 1979–1990 (2016)

    Article  Google Scholar 

  25. Smarandache, F.: A Unifying Field in Logics: Neutrosophic Logic. American Research Press, Rehoboth (1995)

    MATH  Google Scholar 

  26. Smarandache, F.: Neutrosophic set—a generalization of the intuitionistic fuzzy set. In: Granular Computing 2006 IEEE International Conference, pp. 38–42 (2006). https://doi.org/10.1109/GRC.2006.1635754

  27. Thirunavukarasu, P., Suresh, R., Viswanathan, K.K.: Energy of a complex fuzzy graph. Int. J. Math. Sci. Eng. Appl. 10, 243–248 (2016)

    Google Scholar 

  28. Wang, H., Smarandache, F., Zhang, Y.Q., Sunderraman, R.: Single-valued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010)

    MATH  Google Scholar 

  29. Yaqoob, N., Gulistan, M., Kadry, S., Wahab, H.: Complex intuitionistic fuzzy graphs with application in cellular network provider companies. Mathematics 7, 35 (2019)

    Article  Google Scholar 

  30. Yaqoob, N., Akram, M.: Complex neutrosophic graphs. Bull. Comput. Appl. Math. 6, 85–109 (2018)

    Google Scholar 

  31. Yazdanbakhsh, O., Dick, S.: A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. 338, 1–22 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  33. Zhan, J., Masood, H., Akram, M.: Novel decision-making algorithms based on intuitionistic fuzzy rough environment. Int. J. Mach. Learn. Cybernet. 10(6), 1459–1485 (2019)

    Article  Google Scholar 

  34. Zhan, J., Akram, M., Sitara, M.: Novel decision-making method based on bipolar neutrosophic information. Soft. Comput. 23(20), 9955–9977 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Siddique.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, S., Ahmad, U. & Akram, M. A study on generalized graphs representations of complex neutrosophic information. J. Appl. Math. Comput. 65, 481–514 (2021). https://doi.org/10.1007/s12190-020-01400-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01400-0

Keywords

Mathematics Subject Classification

Navigation