Skip to main content
Log in

A computational procedure for exact solutions of Burgers’ hierarchy of nonlinear partial differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper considers the exact solution of Burgers’ hierarchy of nonlinear evolution equations. We construct the general nth conservation law of the hierarchy and prove that these expressions may be transformed into ordinary differential equations. In particular, a coordinate transformation leads to the systematic reduction of the conservation law properties of the Burgers’ hierarchy. Such an approach yields a nonlinear equation, where a second transformation is derived to linearize the expression. Consequently, this approach describes a procedure for finding the exact solutions of the hierarchy. A formula of the nth solution is provided, and to demonstrate its application, we discuss the solution to several members of the nonlinear hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burgers, J.M.: A mathematical model illustrating the theory of turbulance. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  Google Scholar 

  2. Olver, P.J.: Evolution equations possessing infinitly many symmetries. J. Math. Phys. 18, 1212–1215 (1977)

    Article  Google Scholar 

  3. Hopf, E.: The partial differential equation \(u_t + u u_x = u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  Google Scholar 

  4. Benton, E.R.: Some new exact, viscous, nonsteady solutions of Burgers’ equation. J. Math. Phys. 9, 1129–1136 (1968)

    Article  Google Scholar 

  5. Hereman, W., Banerjee, P.P., Korpel, A., Assanto, G., Van Immerzeele, A., Meerpoel, A.: Exact solitary wave solutions of non-linear evolution and wave equations using a direct algebraic method. J. Phys. A Math. Gen. 19, 607–628 (1986)

    Article  Google Scholar 

  6. Yang, Z.J.: Travelling wave solutions to nonlinear evolution and wave equations. J. Phys. A Math. Gen. 27, 2837–2855 (1994)

    Article  MathSciNet  Google Scholar 

  7. Kudryashov, N.A., Sinelshchikov, D.I.: The Cauchy problem for the equation of the Burgers hierarchy. Nonlinear Dyn. 76(1), 561–569 (2014)

    Article  MathSciNet  Google Scholar 

  8. Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

    Article  MathSciNet  Google Scholar 

  9. Soliman, A.A.: The modified extended tanh-function method for solving Burgers-type equations. Phys. A Stat. Mech. Appl. 361(2), 394–404 (2006)

    Article  MathSciNet  Google Scholar 

  10. Kudryashov, N.A., Sinelshchikov, D.I.: Exact solutions of equations for the Burgers hierarchy. Appl. Math. Comput. 215(3), 1293–1300 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Fahmy, E.S., Raslan, K.R., Abdusalam, H.A.: On the exact and numerical solution of the time-delayed Burgers equation. Int. J. Comput. Math. 85, 1637–1648 (2008)

    Article  MathSciNet  Google Scholar 

  12. Jamal, S.: Solutions of quasi-geostrophic turbulence in multi-layered configurations. Quaest. Math. 41(3), 409–421 (2018)

    Article  MathSciNet  Google Scholar 

  13. Wazwaz, A.M.: New solitons and kinks solutions to the Sharma–Tasso–Olver equation. Appl. Math. Comput. 188, 1205–1213 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Jamal, S., Kara, A.H.: New higher-order conservation laws of some classes of wave and Gordon-type equations. Nonlinear Dyn. 67, 97–102 (2012)

    Article  MathSciNet  Google Scholar 

  15. Weinan, E., Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. 151(3), 877–960 (2000)

    Article  MathSciNet  Google Scholar 

  16. Jamal, S.: Solutions for ultra-broad beam propagation in a planar waveguide with Kerr-like nonlinearity. J. Nonlinear Opt. Phys. Mater. 27(3), 1850032 (2018)

    Article  Google Scholar 

  17. Khater, M.M.A., Baleanu, D.: On abundant new solutions of two fractional complex models. Adv. Differ. Equ. 2020, 268 (2020)

    Article  MathSciNet  Google Scholar 

  18. Khater, M.M.A., Park, C., Lu, D., et al.: Analytical, semi-analytical, and numerical solutions for the Cahn–Allen equation. Adv. Differ. Equ. 2020, 9 (2020)

    Article  MathSciNet  Google Scholar 

  19. Khater, M.M.A., Attia, R., Abdel-Aty, A., Alharbi, W., Lu, D.: Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms. Chaos Solitons Fractals 136, 109824 (2020)

    Article  MathSciNet  Google Scholar 

  20. Qin, H., Khater, M.M.A., Attia, R.: Inelastic interaction and blowup new solutions of nonlinear and dispersive long gravity waves. J. Funct. Space 2020, 5362989 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Park, C., Khater, M.M.A., Abdel-Aty, A., Attia, R., Rezazadeh, H., Zidan, A., Mohamed, A.-B.A.: Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quantic. Alex. Eng. J. 59, 1425–1433 (2020)

    Article  Google Scholar 

  22. Khater, M.M.A., Ghanbari, B., Nisar, K., Kumar, D.: Novel exact solutions of the fractional Bogoyavlensky-Konopelchenko equation involving the Atangana-Baleanu-Riemann derivative. Alex. Eng. J. (2020). https://doi.org/10.1016/j.aej.2020.03.032

    Article  Google Scholar 

  23. Yue, C., Lu, D., Khater, M.M.A., Abdel-Aty, A., Alharbi, W., Attia, R.A.: On explicit wave solutions of the fractional nonlinear DSW system via the modified Khater method. Fractals (2020). https://doi.org/10.1142/S0218348X20400344

    Article  Google Scholar 

  24. Abdel-Aty, A., Khater, M.M.A., Attia, R., Abdel-Aty, M., Eleuch, H.: On the new explicit solutions of the fractional nonlinear space-time nuclear model. Fractals 28(8), 2040035 (2020). https://doi.org/10.1142/S0218348X20400356

    Article  Google Scholar 

  25. Abdel-Aty, A., Khater, M.M.A., Attia, R., Eleuch, H.: Exact traveling and nano-solitons wave solitons of the ionic waves propagating along microtubules in living cells. Mathematics 8, 697 (2020)

    Article  Google Scholar 

  26. Qin, H., Khater, M.M.A., Attia, R.: Copious closed forms of solutions for the fractional nonlinear longitudinal strain wave equation in microstructured solids. Math. Probl. Eng. 2020, 3498796 (2020)

    MathSciNet  Google Scholar 

  27. Gandarias, M.L., Bruzón, M.S.: Conservation laws for a Boussinesq equation. Appl. Math. Nonlinear Sci. 2(2), 465–472 (2017)

    Article  MathSciNet  Google Scholar 

  28. Qureshi, M.A., Hussain, S., Shabbir, G.: Conservation of Hamiltonian using continuous Galerkin Petrov time discretization scheme. Math. Rep. 19, 127–143 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Kara, A.H., Mahomed, F.M.: The relationship between symmetries and conservation laws. Int. J. Theor. Phys. 39(1), 23–40 (2000)

    Article  MathSciNet  Google Scholar 

  30. Sjöberg, A.: Double reduction of PDEs from the association of symmetries with conservation laws with applications. Appl. Math. Comput. 184, 608616 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Bokhari, A.H., Al-Dweik, A., Zaman, F.D., Kara, A.H., Mahomed, F.M.: Generalization of the double reduction theory. Nonlinear Anal. Real World Appl. 11, 3763 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameerah Jamal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SJ acknowledges the financial support of the National Research Foundation of South Africa (118047).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaidullah, U., Jamal, S. A computational procedure for exact solutions of Burgers’ hierarchy of nonlinear partial differential equations. J. Appl. Math. Comput. 65, 541–551 (2021). https://doi.org/10.1007/s12190-020-01403-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01403-x

Keywords

Mathematics Subject Classification

Navigation