Skip to main content
Log in

An approximate wavelets solution to the class of variational problems with fractional order

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In the present work, a generalized fractional integral operational matrix is derived by using classical Legendre wavelets. Then, a numerical scheme based on this operational matrix and Lagrange multipliers is proposed for solving variational problems with fractional order. This approach has been applied on some illustrative examples. The results obtained for these examples demonstrate that the suggested technique is efficient for solving variational problems with fractional order and gives a very perfect agreement with the exact solution. The results are depicted in graphical maps and data tables. The integral square error, maximum absolute error, and order of convergence have been evaluated to analyze the precision of the suggested method. The present scheme provides better and comparable results with some other existing approaches available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kober, H.: On fractional integrals and derivatives. Q. J. Math. 11(1), 193–211 (1940)

    MathSciNet  MATH  Google Scholar 

  2. Tarasov, V.E.: Lattice fractional calculus. Appl. Math. Comput. 257, 12–33 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14, 1487–1498 (2008)

    MathSciNet  Google Scholar 

  5. Wei, Y.Q., Liu, D.Y., Boutat, D.: Innovative fractional derivative estimation of the pseudo-state for a class of fractional order linear systems. Automatica 99, 157–166 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Heydari, M.H., Atangana, A., Avazzadeh, Z., Mahmoudi, M.R.: An operational matrix method for nonlinear variable-order time fractional reaction-diffusion equation involving Mittag-Leffler kernel. Eur. Phys. J. Plus. 135(2), 1–19 (2020)

    Google Scholar 

  8. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124, 803–806 (2002)

    Google Scholar 

  9. Mandelbrot, B.: Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans. Inf. Theory 13(2), 289–298 (1967)

    MATH  Google Scholar 

  10. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Inc., Danbury (2006)

    Google Scholar 

  11. Hall, M.G., Barrick, T.R.: From diffusion-weighted MRI to anomalous diffusion imaging. Magn. Reson. Med. 59, 447–455 (2008)

    Google Scholar 

  12. Yu, Q., Liu, F., Turner, I., Burrage, K., Vegh, V.: The use of a Riesz fractional differential based approach for texture enhancement in image processing. ANZIAM J. 54, 590–607 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Arafa, A.A.M., Rida, S.Z., Khalil, M.: Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. Nonlinear Biomed. Phys. 6, 1–7 (2012)

    Google Scholar 

  14. Carvalho, A., Pinto, C.M.A.: A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Control 5, 168–186 (2017)

    MathSciNet  Google Scholar 

  15. Ferreira, N.M.F., Duarte, F.B., Lima, M.F.M., Marcos, M.G., Machado, J.A.T.: Application of fractional calculus in the dynamical analysis and control of mechanical manipulators. Fract. Calc. Appl. Anal. 11, 91–113 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41(1), 9–12 (2010)

    MATH  Google Scholar 

  17. Povstenko, Y.Z.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 55, 593–605 (2010)

    MATH  Google Scholar 

  18. Engheta, N.: On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 44(4), 554–566 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Translated from the 1987 Russian original. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  21. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  22. Hilfer, R.: Applications of Fractional Calculus in Physics. World Sci. Publishing, River Edge (2000)

    MATH  Google Scholar 

  23. Rayal, A., Verma, S.R.: Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets. Chaos Solitons Fractals (2020). https://doi.org/10.1016/j.chaos.2020.110076

    Article  MathSciNet  Google Scholar 

  24. Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 57, 483–487 (2009)

    MathSciNet  MATH  Google Scholar 

  25. He, J.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Baleanu, D., Wu, G.C., Duan, J.S.: Some analytical techniques in fractional calculus: realities and challenges. Discontinuity Complex. Nonlinear Phys. Syst. 6, 35–62 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Goswami, A., Singh, J., Kumar, D., Rathore, S.: An effcient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A 524, 563–575 (2019)

    MathSciNet  Google Scholar 

  28. Ray, S.S., Bera, R.K.: An approximate solution of a nonlinear fractional differential equation by Adomain decomposition method. Appl. Math. Comput. 167, 561–571 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  30. He, J.: Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 15, 86–90 (1999)

    Google Scholar 

  31. Almeida, R., Pooseh, S., Torres, D.F.M.: Computational Methods in the Fractional Calculus of Variations. Imperial College Press, London (2015)

    MATH  Google Scholar 

  32. Mahmood, S., Shah, R., Khan, H., Arif, M.: Laplace adomian decomposition method for multi-dimensional time fractional model of Navier–Stokes equation. Symmetry 11(2), 149 (2019)

    MATH  Google Scholar 

  33. Khan, H., Shah, R., Kumam, P., Arif, M.: Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method. Entropy 21(6), 597 (2019)

    MathSciNet  Google Scholar 

  34. Jain, S.: Numerical analysis for the fractional diffusion and fractional buckmaster equation by the two-step laplace adam-bashforth method. Eur. Phys. J. Plus 133(1), 19 (2018)

    Google Scholar 

  35. Prakash, A.: Analytical method for space-fractional telegraph equation by homotopy perturbation transform method. Nonlinear Eng. 5(2), 123–128 (2016)

    Google Scholar 

  36. Podlubny, I.: The Laplace transform method for linear differential equations of the fractional order. arXiv:funct-an/9710005v1 (1997)

  37. Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(1), 96–110 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process 5, 81–88 (1991)

    Google Scholar 

  39. Odibat, Z., Shawagfeh, N.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Ghazanfari, B., Sepahvandzadeh, A.: Homotopy perturbation method for solving fractional Bratu-type equation. J. Math. Model. 2(2), 143–155 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Erturk, V.S., Momani, S.: Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 215(1), 142–151 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Mohammadi, F.: Wavelet Galerkin method for solving stochastic fractional differential equations. J. Fract. Calc. Appl. 7(1), 73–86 (2016)

    MathSciNet  Google Scholar 

  44. Eslahchi, M.R., Dehgh, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257(1), 105–128 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14, 523–537 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)

    MathSciNet  Google Scholar 

  47. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)

    MathSciNet  Google Scholar 

  48. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A 39, 10375–10384 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22, 1816–1820 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Agrawal, O.P.: A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337, 1–12 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Pooseh, S., Almeida, R., Torres, D.F.M.: A discrete time method to the first variation of fractional order variational functionals. Central Eur. J. Phys. 11, 1262–1267 (2013)

    Google Scholar 

  53. Agrawal, O.P.: Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivatives. J. Vib. Control 13(9–10), 1217–1237 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Bourdin, L., Odzijewicz, T., Torres, D.F.M.: Existence of minimizers for generalized Lagrangian functionals and a necessary optimality condition-application to fractional variational problems. Differ. Integral Equ. 27(7–8), 743–766 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A 41(9), 095201 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Almeida, R., Malinowska, A.B., Torres, D.F.M.: A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51, 033503 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Mozyrska, D., Torres, D.F.M.: Minimal modified energy control for fractional linear control systems with the Caputo derivative. Carpathian J. Math. 26, 210–221 (2010)

    MathSciNet  MATH  Google Scholar 

  58. Ordokhani, Y., Rahimkhani, P.: A numerical technique for solving fractional variational problems by Muntz-Legendre polynomials. J. Appl. Math. Comput. 58, 75–94 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Ezz-Eldien, S.S.: New quadrature approach based on operational matrix for solving a class of fractional variational problems. J. Comput. Phys. 317, 362–381 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Ezz-Eldien, S.S., Hafez, R.M., Bhrawy, A.H., Baleanu, D., El-Kalaawy, A.A.: New numerical approach for fractional variational problems using shifted Legendre orthonormal polynomials. J. Optim. Theory Appl. 174, 295–320 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Jahanshahi, S., Torres, D.F.M.: A simple accurate method for solving fractional variational and optimal control problems. J. Optim. Theory Appl. 174, 156–175 (2017)

    MathSciNet  MATH  Google Scholar 

  62. Singh, H., Pandey, R.K., Srivastava, H.M.: Solving non-linear fractional variational problems using Jacobi polynomials. Mathematics 7(3), 224 (2019)

    Google Scholar 

  63. Osama, H.M.: A direct method for solving fractional order variational problems by hat basis functions. Ain Shams Eng. J. 9, 1513–1518 (2018)

    Google Scholar 

  64. Dehghan, M., Hamedi, E.A., Khosravian-Arab, H.: A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. J. Vib. Control 22(6), 1547–1559 (2014)

    MathSciNet  MATH  Google Scholar 

  65. Wang, D., Xiao, A.: Fractional variational integrators for fractional variational problems. Commun. Nonlinear Sci. Numer. Simul. 17, 602–610 (2012)

    MathSciNet  MATH  Google Scholar 

  66. Khosravian-Arab, H., Almeida, R.: Numerical solution for fractional variational problems using the Jacobi polynomials. Appl. Math. Model. 39, 6461–6470 (2015)

    MathSciNet  MATH  Google Scholar 

  67. Tavares, D., Almeida, R., Torres, D.F.M.: Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order. Optimization 64, 1381–1391 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Pooseh, S., Almeida, R., Torres, D.F.M.: Discrete direct methods in the fractional calculus of variations. Comput. Math. Appl. 66, 668–676 (2013)

    MathSciNet  MATH  Google Scholar 

  69. Almeida, R., Morgado, M.L.: Analysis and numerical approximation of tempered fractional calculus of variations problems. J. Comput. Appl. Math. 361, 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  70. Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: Hybrid functions approach for nonlinear constrained optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 17, 1831–1843 (2012)

    MathSciNet  MATH  Google Scholar 

  71. Rowe, A.C.H., Abbott, P.C.: Daubechies wavelets and mathematica. Comput. Phys. 9(6), 635 (1995). https://doi.org/10.1063/1.168556

    Article  Google Scholar 

  72. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    MathSciNet  MATH  Google Scholar 

  73. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  74. Chui, C.K.: An Introduction to Wavelets. Academic Press, San Diego, CA (1992)

    MATH  Google Scholar 

  75. Chui, C.K.: Wavelets: A Mathematical Tool for Signal Analysis, vol. 1. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  76. Debnath, L.: Wavelets Transform and Their Applications. Birkhauser, Boston (2002)

    Google Scholar 

  77. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic press, New York (2008)

    MATH  Google Scholar 

  78. Osama, H.M., Fadhel, S.F., Zaid, A.M.: Numerical solution of fractional variational problems using direct Haar wavelet method. Int. J. Innov. Res. Sci. Eng. Technol. 3(5), 12742–12750 (2014)

    Google Scholar 

  79. Kheirabadi, A., Vaziri, A.M., Effati, S.: Solving fractional variational problem via an orthonormal function. Stat. Optim. Inf. Comput. 7, 447–455 (2019)

    MathSciNet  MATH  Google Scholar 

  80. Oldham, K.M.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  81. Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman & Wiley, Harlow, New York (1994)

    MATH  Google Scholar 

  82. Razzaghi, M., Yousefi, S.: The Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32(4), 495–502 (2001)

    MathSciNet  MATH  Google Scholar 

  83. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions. Comput. Methods Differ. Equ. 5, 117–140 (2017)

    MathSciNet  MATH  Google Scholar 

  84. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas and Mathematical Tables. Dover, New York (1965)

    MATH  Google Scholar 

  85. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  86. Mashayekhi, S., Razzaghi, M., Wattanataweekul, M.: Analysis of multi-delay and piecewise constant delay systems by hybrid functions approximation. Differ. Equ. Dyn. Syst. 24, 1–20 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for carefully reading the manuscript and for giving valuable suggestions and comments which significantly contributed to the quality and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sag Ram Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayal, A., Verma, S.R. An approximate wavelets solution to the class of variational problems with fractional order. J. Appl. Math. Comput. 65, 735–769 (2021). https://doi.org/10.1007/s12190-020-01413-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01413-9

Keywords

Mathematics Subject Classifications

Navigation