Skip to main content
Log in

Partitioned second derivative methods for separable Hamiltonian problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, the partitioned second derivative general linear methods for solving separable Hamiltonian problems are derived which are G-symplectic, interchange symmetry and have zero parasitic growth factors. Order conditions for such methods based on the theory of rooted trees are provided and examples of partitioned pairs of order 2 and 3 are given. The experiments have been performed on some separable problems and no drift in the variation of the Hamiltonian is observed in numerical experiments for long time intervals. Also, the results of numerical experiments demonstrate the efficiency of our new methods in comparison with some symplectic and G-symplectic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdi, A.: Construction of high-order quadratically stable second-derivative general linear methods for the numerical integration of stiff ODEs. J. Comput. Appl. Math. 303, 218–228 (2016)

    Article  MathSciNet  Google Scholar 

  2. Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods for ODEs. Appl. Numer. Math. 76, 1–18 (2014)

    Article  MathSciNet  Google Scholar 

  3. Abdi, A., Hojjati, G.: An extension of general linear methods. Numer. Algor. 57, 149–167 (2011)

    Article  MathSciNet  Google Scholar 

  4. Abdi, A., Hojjati, G.: Maximal order for second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)

    Article  MathSciNet  Google Scholar 

  5. Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)

    Article  MathSciNet  Google Scholar 

  6. Abia, L., Sanz-Serna, J.M.: Partitioned Runge–Kutta methods for separable Hamiltonian problems. Math. Comput. 60, 617–634 (1993)

    Article  MathSciNet  Google Scholar 

  7. Arnold, V.I.: Mathematical methods of classical mechanics, vol. 60. Springer, Berlin (1998)

    Google Scholar 

  8. Butcher, J.C.: Numerical methods for ordinary differential equations. Wiley, Hoboken (2016)

    Book  Google Scholar 

  9. Butcher, J.C., D’Ambrosio, R.: Partitioned general linear methods for separable Hamiltonian problems. Appl. Numer. Math. 117, 69–86 (2017)

    Article  MathSciNet  Google Scholar 

  10. Butcher, J.C., Habib, Y., Hill, A.T., Norton, T.J.: The control of parasitism in G-symplectic methods. SIAM J. Numer. Anal. 52, 2440–2465 (2014)

    Article  MathSciNet  Google Scholar 

  11. Butcher, J.C., Hewitt, L.L.: The existence of symplectic general linear methods. Numer. Algor. 51, 77–84 (2009)

    Article  MathSciNet  Google Scholar 

  12. Butcher, J.C., Hill, A., Norton, T.: Symmetric general linear methods. BIT 56, 1189–1212 (2016)

    Article  MathSciNet  Google Scholar 

  13. Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algor. 40, 415–429 (2005)

    Article  MathSciNet  Google Scholar 

  14. Calvo, M.P., Hairer, E.: Further reduction in the number of independent order conditions for symplectic, explicit partitioned Runge–Kutta and Runge–Kutta–Nyström methods. Appl. Numer. Math. 18, 107–114 (1995)

    Article  MathSciNet  Google Scholar 

  15. D’Ambrosio, R., Hairer, E., Zbinden, C.J.: G-symplecticity implies conjugate-symplecticity of the underlying one-step method. BIT 53, 867–872 (2013)

    Article  MathSciNet  Google Scholar 

  16. Hairer, E.: Order conditions for numerical methods for partitioned ordinary differential equations. Numer. Math. 36, 431–445 (1981)

    Article  MathSciNet  Google Scholar 

  17. Hairer, E.: Symmetric linear multistep methods. BIT 46, 515–524 (2006)

    Article  MathSciNet  Google Scholar 

  18. Hairer, E., Lubich, C.: Symmetric multistep methods over long times. Numer. Math. 97, 699–723 (2004)

    Article  MathSciNet  Google Scholar 

  19. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MathSciNet  Google Scholar 

  21. Hosseini Nasab, M., Abdi, A., Hojjati, G.: Symmetric second derivative integration methods. J. Comput. Appl. Math. 330, 618–629 (2018)

    Article  MathSciNet  Google Scholar 

  22. Hosseini Nasab, M., Hojjati, G., Abdi, A.: G-symplectic second derivative general linear methods for Hamiltonian problems. J. Comput. Appl. Math. 313, 486–498 (2017)

    Article  MathSciNet  Google Scholar 

  23. Kramarz, L.: Stability of collocation methods for the numerical solution of \(y^{\prime \prime }= f(t, y)\). BIT 20, 215–222 (1980)

    Article  MathSciNet  Google Scholar 

  24. Lopez-Marcos, M.A., Sanz-Serna, J.M., Skeel, R.D.: An explicit symplectic integrator with maximal stability interval. In: Numerical Analysis: A. R. Mitchell 75th Birthday Volume. World Scientific, Singapore, pp. 163–175 (1996)

  25. McLachlan, R.I., Sun, Y., Tse, P.S.P.: Linear stability of partitioned Runge–Kutta methods. SIAM J. Numer. Anal. 49, 232–263 (2011)

    Article  MathSciNet  Google Scholar 

  26. Movahedinejad, A., Hojjati, G., Abdi, A.: Second derivative general linear methods with inherent Runge–Kutta stability. Numer. Algor. 73, 371–389 (2016)

    Article  MathSciNet  Google Scholar 

  27. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numer. 4, 37–483 (1997)

    MATH  Google Scholar 

  28. Quinlan, G.D., Tremaine, S.: Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  29. Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669–2671 (1983)

    Article  Google Scholar 

  30. Sharp, P.W.: N-body simulations: the performance of some integrators. ACM Trans. Math. Softw. 32, 375–395 (2006)

    Article  MathSciNet  Google Scholar 

  31. Sanz-Serna, J.M.: Runge–Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988)

    Article  MathSciNet  Google Scholar 

  32. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

    Book  Google Scholar 

  33. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323 (1990)

    Article  MathSciNet  Google Scholar 

  34. Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Iran National Science Foundation (INSF) (Grant No. 96011504). The author is grateful to her postdoctoral supervisor, Professor Seyed Mohammad Hosseini of Applied Maths. Dept., for his patient guidance and helpful discussions which have led to this joint work. I also like to thank the editor and anonymous reviewers for their comments that have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Hosseini Nasab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasab, M.H. Partitioned second derivative methods for separable Hamiltonian problems. J. Appl. Math. Comput. 65, 831–859 (2021). https://doi.org/10.1007/s12190-020-01417-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01417-5

Keywords

Navigation