Skip to main content
Log in

Borodin–Kostochka’s conjecture on \((P_5,C_4)\)-free graphs

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Brooks’ theorem states that for a graph G, if \(\varDelta (G)\ge 3\), then \(\chi (G)\le \max \{\varDelta (G),\omega (G)\}\). Borodin and Kostochka conjectured a result strengthening Brooks’ theorem, stated as, if \(\varDelta (G)\ge 9\), then \(\chi (G)\le \max \{\varDelta (G)-1,\omega (G)\}\). This conjecture is still open for general graphs. In this paper, we show that the conjecture is true for graphs having no induced path on five vertices and no induced cycle on four vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brooks, R.L.: On colouring the nodes of a network. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, Cambridge, vol. 37, issue 2, pp. 194–197 (1941)

  2. Borodin, O.V., Kostochka, A.V.: On an upper bound of a graph’s chromatic number, depending on the graph’s degree and density. J. Comb. Theory Ser. B 23(2–3), 247–250 (1977)

    Article  MathSciNet  Google Scholar 

  3. Catlin, P.A.:. Embedding subgraphs and coloring graphs under extremal degree conditions. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.). The Ohio State University (1976)

  4. Cranston, D.W., Lafayette, H., Rabern, L.: Coloring \((P_5,gem)\)-free graphs with \(\Delta -1\) colors. arXiv:2006.02015 (2020)

  5. Cranston, D.W., Rabern, L.: Graphs with \(\chi =\Delta \) have big cliques. SIAM J. Discrete Math. 29(4), 1792–1814 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cranston, D.W., Rabern, L.: Coloring claw-free graphs with \(\Delta -1\) colors. SIAM J. Discrete Math. 27(1), 534–549 (2013)

    Article  MathSciNet  Google Scholar 

  7. Dirac, G.A.: Note on the colouring of graphs. Math. Z. 54, 347–353 (1951)

    Article  MathSciNet  Google Scholar 

  8. Dhurandhar, M.: Improvement on Brooks’ chromatic bound for a class of graphs. Discrete Math. 42(1), 51–56 (1982)

    Article  MathSciNet  Google Scholar 

  9. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York (1995)

    MATH  Google Scholar 

  10. Kierstead, H.A., Schmerl, J.H.: The chromatic number of graphs which induce neither \(K_{1,3}\) nor \(K_5-e\). Discrete Math. 58(3), 253–262 (1986)

    Article  MathSciNet  Google Scholar 

  11. Kohl, A., Schiemeyer, I.: Some results on Reed’s Conjecture about \(\omega \), \(\Delta \), and \(\chi \) with respect to \(\alpha \). Discrete Math. 310(9), 1429–1438 (2010)

    Article  MathSciNet  Google Scholar 

  12. Kostochka, A.V.: Degree, density, and chromatic number. Metody Diskret. Anal. 35, 45–70 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Kostochka, A.V., Rabern, L., Stiebitz, M.: Graphs with chromatic number close to maximum degree. Discrete Math. 312(6), 1273–1281 (2012)

    Article  MathSciNet  Google Scholar 

  14. Reed, B.: A strengthening of Brooks’ theorem. J. Comb. Theory Ser. B 76(2), 136–149 (1999)

    Article  MathSciNet  Google Scholar 

  15. Schiermeyer, I., Randerath, B.: Polynomial \(\chi \)-binding functions and forbidden induced subgraphs—a survey. Graphs Combin. 35, 1–31 (2018)

    Article  MathSciNet  Google Scholar 

  16. Scott, A., Seymour, P.: A survey of \(\chi \)-boundedness. arXiv:1812.07500 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, U.K., Pradhan, D. Borodin–Kostochka’s conjecture on \((P_5,C_4)\)-free graphs. J. Appl. Math. Comput. 65, 877–884 (2021). https://doi.org/10.1007/s12190-020-01419-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01419-3

Keywords

Mathematics Subject Classification