Skip to main content
Log in

Dynamical study of quadrating harvesting of a predator–prey model with Monod–Haldane functional response

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this study, we have investigated local and global dynamics of a modified Leslie–Gower predator–prey model with Monod–Haldane functional response, where prey is subjected to quadratic harvesting. It is found that the solutions of the proposed system are positive and bounded uniformly. The feasible equilibrium points are also obtained for some suitable and predefined conditions. It is observed that the system exhibits at most three non-zero interior equilibrium points for different choices of parameters under certain conditions. The dynamics of all these feasible equilibrium points have been analysed using Routh–Hurwitz criterion. Local bifurcations analysis such as transcritical and saddle-node bifurcations have been investigated using Sotomayor’s theorem. To demonstrate the analytical results, numerical simulations using some suitable data set are carried out. Optimal harvesting policy has been obtained using Pontryagin’s Maximum Principle to show that the species can be preserved from extinction and a sustainable fishery can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Murdoch, W., Briggs, C., Nisbet, R.: Consumer-Resource Dynamics. Princeton University Press, New York (2003)

    Google Scholar 

  2. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomolog Soc. Can. 45, 5–60 (1965)

    Article  Google Scholar 

  3. Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707–23 (1968)

    Article  Google Scholar 

  4. Sugie, J., Howell, J.A.: Kinetics of phenol oxidation by washed cell. Biotechnol. Bioeng. 23, 2039–49 (1980)

    Google Scholar 

  5. Tener, J.S.: Muskoxen Biotechnology and Bioengineering. Queen’s Printer, Ottawa (1995)

    Google Scholar 

  6. Khajanchi, S.: Dynamic behavior of a Beddington–DeAngelis type stage structured predator–prey model. Appl. Math. Comput. 244, 344–360 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Feng, X., Song, Y., An, X.: Dynamic behavior analysis of a prey–predator model with ratio-dependent Monod–Haldane functional response. Open. Math. 16, 623–635 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Z., Tan, R.: Impulsive harvesting and stocking in a monod–haldane functional response predator–prey system. Chaos Soliton Fract. 34, 454–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, S., Dong, L., Chen, L.: The study of predator–prey system with defensive ability of prey and impulsive perturbations on the predator. Chaos Soliton Fract. 23, 631–43 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lui, Y.: Geometric criteria for non-existence of cycles in predator–prey systems with group defence. Math. Biosci. 208, 193–204 (2007)

    Article  MathSciNet  Google Scholar 

  11. Rimpi, P., Debanjana, B., Banerjee, M.: Modelling of phytoplankton allelopathy with monod–haldane-type functional response—a mathematical study. BioSyst 95, 243–53 (2009)

    Article  Google Scholar 

  12. Naji, R.K., Balasim, A.T.: Dynamical behavior of a three species food chain model with beddington–deangelis functional response. Chaos Soliton Fract. 32, 1853–66 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gakkhar, S., Rani, R.: Non-linear harvesting of prey with dynamically varying effort in a modified Leslie–Gower predator–prey system. Commun. Math. Biol. Neurosci. 2, 2052–2541 (2017)

    Google Scholar 

  14. Upadhyay, R.K., Raw, S.N.: Complex dynamics of a three species food-chain model with Holling type-IV functional response. Nonlinear Anal. Model. Control 16, 353–74 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator–prey system with Michaelis–Menten type predator harvesting. Nonlinear Anal. 33, 58–82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, J.: Canard limit cycles and global dynamics in a singularly perturbed predator-prey system with non-monotonic functional response. Nonlinear Anal. 31, 146–65 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mena Lorca, J., Gonzalez Olivares, E., Gonzalez Yanez, B.: The Leslie Gower predator prey model with Allee effect on prey: a simple model with a rich and interesting dynamics. In: Proceedings of 2006 International Symposium on Mathematical and Computational Biology, Editoria E-papers (2006)

  18. Lin, C.M., Ho, C.P.: Local and global stability for a predator–prey model of modified Leslie–Gower and Holling type-II with time delay. Tunghai. Sci. 8, 33–61 (2006)

    Google Scholar 

  19. Li, Y., Xiao, D.: Bifurcations of a predator–prey system of Holling and Leslie types. Chaos Solitons Fract. 34, 606–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Song, L.Y.: Dynamic behaviors of the periodic predator–prey model with modified Leslie–Gower Holling Type-II scheme and Impulsive effect. Nonlinear Anal. Real World Appl. 9, 64–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, C.R., Lan, K.Q.: Phase portraits, Hopf bifurcations and limit cycles of Leslie Gower predator prey systems with harvesting rates. Discrete Contin. Dyn. Syst. Ser. B 14, 289–306 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, N., Chen, F., Su, Q.: Dynamic behaviors of a harvesting Leslie–Gower predator–prey model. Discrete Dyn. Nat. Soc. Art. ID 473949, 14 pp (2011)

  23. Rojas Palma, A., Gonzalez, O.E.: Optimal harvesting in a predator prey model with Allee effect and sigmoid functional response. Appl. Math. Model. 36(5), 1864–1874 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley-Interscience, New York (1976)

    MATH  Google Scholar 

  25. Clark, C.W.: Bioeconomic Modelling and Fisheries Management. Wiley, New York (1985)

    Google Scholar 

  26. Rani, R., Gakkhar, S.: The impact of provision of additional food to predator in predator-prey model with combined harvesting in the presence of toxicity. J. Appl. Math. Comput. 60, 673–701 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rani, R., Gakkhar, S., Ali, M..: Dynamics of a fishery system in a patchy environment with nonlinear harvesting. Math. Methods Appl. Sci. https://doi.org/10.1002/mma.5826 (2019)

  28. Song, X.Y., Chen, L.S.: Optimal harvesting and stability for a two-species competetive system with stage structure. Math. Biosci. 170, 173–86 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kar, T.K., Chaudhuri, K.S.: Harvesting in a two-prey one predator fishery: a bioeconomic model. ANZIAM J. 45, 443–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Feng, P.: Analysis of a delayed predator–prey model with ratio-dependent functional response and quadratic harvesting. J. Appl. Math. Comp. 44, 251–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Puchuri, L., González-Olivares, E., Rojas-Palma, A.: Multistability in a Leslie–Gower-type predation model with a rational non-monotonic functional response and generalist predators. Comput. Math. Methods. https://doi.org/10.1002/cmm4.1070 (2019)

  32. Nagumo, M.: Uber die Lage der Integralkurven gew onlicher differential gleichungen. Proc. Phys. Math. Soc. Jpn. 24, 551 (1942)

    MATH  Google Scholar 

  33. Perko, L.: Differential Equations and Dynamical Systems Texts in Applied Mathematics, 7, 2nd edn. Springer, New York (1996)

    Book  Google Scholar 

  34. Pontryagin, L.S.; Boltyonskii V.S., Gamkrelidze R.V., Mishchenko E.F.: The mathematical theory of optimal processes (Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt), Interscience Publishers John Wiley & Sons, Inc., New York (1962)

  35. Govaerts, W., Kuznetsov, Y.A., Dhooge, A.: Numerical continuation of bifurcations of limit cycles in matlab. SIAM J. Sci. Comput. 27, 231–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Riet, A.: A continuation toolbox in MATLAB. Master thesis, Mathematical Institute, Utrecht University, The Netherlands (2000)

  37. Abu Arqub, O.: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 55, 31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Abu Arqub, O.: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis. Fundamenta Informaticae 166(2), 111–137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reenu Rani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Rani, R., Bhatia, R. et al. Dynamical study of quadrating harvesting of a predator–prey model with Monod–Haldane functional response. J. Appl. Math. Comput. 66, 397–422 (2021). https://doi.org/10.1007/s12190-020-01438-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01438-0

Keywords

Mathematics Subject Classification