Skip to main content
Log in

Impact of awareness on environmental toxins affecting plankton dynamics: a mathematical implication

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The widespread problem of water pollution due to enhanced concentration of anthropogenic effluents is becoming a global issue. Public environmental awareness may be a plausible factor for the control of toxicants in the aquatic medium. The present paper is devoted to study the impact of awareness among human on reduction of environmental toxins affecting planktonic system. The provision of awareness among people helps to maintain the ecological balance of the system by reducing the input rate of toxicants through anthropogenic sources. The conditions for existence and local asymptotic stability of all feasible steady states of the system are derived. Our study reveals that the system is stable for low or high input rate of toxicants, but for intermediate ranges, the system produces oscillations by destroying the stable dynamics. Moreover, for very large level of pollutants, zooplankton disappears from the system. Importantly, the limited supply of additional food to zooplankton prevents the crash of aquatic food web system. Sensitivity results evoke that environmental toxins can be reduced to a low level by imparting awareness among human, thereby maintaining the rhythm of the planktonic ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Antweiler, R.C., Patton, C.J., Taylor, H.E.: Nutrients, in chemical data for water samples collected during four upriver cruises on the Mississippi river between New Orleans, Louisiana, and Minneapolis, Minnesota. May 1990–April 1992, J.A. Moody, ed., U.S. Geological Survey Open-File Report, 94–523, 89–125 (1995)

  2. Bester, K., Huhnerfuss, H., Brockmann, U., Rick, H.J.: Biological effects of triazine herbicide contamination on marine phytoplankton. Arch. Environ. Contam. Toxicol. 29, 277–283 (1995)

    Google Scholar 

  3. Biswas, S., Tiwari, P.K., Kang, Y., Pal, S.: Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins. Math. Biosci. Eng. 17(2), 1272–1317 (2020)

    MathSciNet  Google Scholar 

  4. Bortz, D.M., Nelson, P.W.: Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics. Bull. Math. Biol. 66, 1009–1026 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Chakraborty, S., Chattopadhyay, J.: Nutrient-phytoplankton-zooplankton dynamics in the presence of additional food source - A mathematical study. J. Biol. Syst. 16(04), 547–564 (2008)

    MATH  Google Scholar 

  6. Chattopadhyay, J.: Effect of toxic substances on a two-species competitive system. Ecol. Model. 84, 287–289 (1996)

    Google Scholar 

  7. Hallam, T., Deluna, J.: Effects of toxicants on populations: a qualitative approaches III. environmental and food chain pathways. J. Theor. Biol. 109, 411–429 (1984)

    Google Scholar 

  8. Huang, Y.J., Jiang, Z.B., Zeng, J.N., et al.: The chronic effects of oil pollution on marine phytoplankton in a subtropical bay. Chin. Environ. Monit. Assess. 176(1), 517–530 (2011)

    Google Scholar 

  9. Kumar, A., Srivastava, P.K., Takeuchi, Y.: Modeling the role of information and limited optimal treatment on disease prevalence. J. Theor. Biol. 414, 103–119 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Liu, Y., Cui, J.: The impact of media convergence on the dynamics of infectious diseases. Int. J. Biomath. 1, 65–74 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Lopes, C., Péry, A.R.R., Chaumot, A., Charles, S.: Ecotoxicology and population dynamics: using DEBtox models in a leslie modeling approach. Ecol. Model. 188(1), 30–40 (2005)

    Google Scholar 

  12. Mandal, A., Tiwari, P.K., Samanta, S., Venturino, E., Pal, S.: A nonautonomous model for the effect of environmental toxins on plankton dynamics. Nonlinear Dyn. 99, 3373–3405 (2020)

    MATH  Google Scholar 

  13. Miao, A.J., Schwehr, K.A., Xu, C., et al.: The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ. Pollut. 157, 3034–3041 (2009)

    Google Scholar 

  14. Miller, R.J., Bennett, S., Keller, A.A., Pease, S., Lenihan, H.S.: \(\text{ TiO}_2\) nanoparticles are phototoxic to marine phytoplankton. PLoS ONE 7(1), e30321 (2012)

    Google Scholar 

  15. Misra, A.K., Sharma, A., Li, J.: A mathematical model for control of vector borne diseases through media campaigns. Discrete Contin. Dyn. Syst. Ser. B 18(7), 1909–1927 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Misra, A.K., Sharma, A., Shukla, J.B.: Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases. Math. Comput. Model. 53, 1221–1228 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Misra, A.K., Singh, R.K., Tiwari, P.K., Khajanchi, S., Kang, Y.: Dynamics of algae blooming: effects of budget allocation and time delay. Nonlinear Dyn. 100, 1779–1807 (2020)

    MATH  Google Scholar 

  18. Misra, A.K., Tiwari, P.K., Chandra, P.: Modeling the control of algal bloom in a lake by applying some external efforts with time delay. Differ. Equ. Dyn. Syst. (2017). https://doi.org/10.1007/s12591-017-0383-5

    Article  Google Scholar 

  19. Misra, A.K., Tiwari, P.K., Venturino, E.: Modeling the impact of awareness on the mitigation of algal bloom in a lake. J. Biol. Phys. 42, 147–165 (2016)

    Google Scholar 

  20. Misra, A.K., Verma, M.: Impact of environmental education on mitigation of carbon dioxide emissions: a modelling study. Int. J. Glob. Warm. 7(4), 466–486 (2015)

    Google Scholar 

  21. Moraïtou-Apostolopoulou, M., Ignatiades, L.: Pollution effects on the phytoplankton-zooplankton relationships in an inshore environment. Hydrobiologia 75(2), 259–266 (1980)

    Google Scholar 

  22. Mukherjee, D.: Persistence and global stability of a population in a polluted environment with delay. J. Biol. Syst. 10(3), 225–232 (2002)

    MATH  Google Scholar 

  23. Navarro, E., Piccapietra, F., Wagner, B., et al.: Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 42(23), 8959–8964 (2008)

    Google Scholar 

  24. Panja, P., Mondal, S.K., Jana, D.K.: Effects of toxicants on phytoplankton-zooplankton-fish dynamics and harvesting. Chaos Solitons Fract. 104, 389–399 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Preston, B.L., Snell, T.W.: Direct and indirect effects of sublethal toxicant exposure on population dynamics of freshwater rotifers: a modeling approach. Aquat. Toxicol. 52(2), 87–99 (2001)

    Google Scholar 

  26. Rana, S., Samanta, S., Bhattacharya, S., et al.: The effect of nanoparticles on plankton dynamics: a mathematical model. BioSystems 127, 28–41 (2015)

    Google Scholar 

  27. Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton-zooplankton interactions. Nonlinear Anal. RWA 10, 314–332 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Shukla, J.B., Lata, K., Misra, A.K.: Modeling the depletion of a renewable resource by population and industrialization: effect of technology on its conservation. Nat. Resour. Model. 24(2), 242–267 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Shukla, J.B., Sharma, S., Dubey, B., Sinha, P.: Modeling the survival of a resource-dependent population: effects of toxicants (pollutants) emitted from external sources as well as formed by its precursors. Nonlinear Anal. RWA 10(1), 54–70 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Smith, H.L.: The Rosenzweig–Macarthur Predator–Prey Model. School of Mathematical and Statistical Sciences, Arizona State University, Phoenix (2008)

    Google Scholar 

  31. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J.: Heavy metals toxicity and the environment. Mol. Clin. Environ. Toxicol. 101, 133–164 (2012)

    Google Scholar 

  32. U.S. Environmental Protection Agency Great Lakes National Program Office Significant Activities Report. http://www.epa.gov/glnpo/aoc/waukegan.html. Accessed 5 July 2020

  33. Yu, X., Yuan, S., Zhang, T.: Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment. Appl. Math. Comput. 347, 249–264 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors thank the anonymous reviewers for valuable comments, which contributed to the improvement in the presentation of the paper. The research work of Arindam Mandal is supported by University Grants Commision, Government of India, New Delhi in the form of Senior Research Fellowship (Ref.No:19/06/2016(i)EU-V). Pankaj Kumar Tiwari is thankful to University Grants Commissions, New Delhi, India for providing financial support in form of D. S. Kothari post-doctoral fellowship (No.F.4-2/2006 (BSR)/MA/17-18/0021). The research of Samares Pal is partially supported by Science and Engineering Research Board, Government of India (Grant No. CRG/2019/003248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samares Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned}&\widetilde{N}_1=\widetilde{N}_{11}+\widetilde{N}_{33}+\widetilde{N}_{44},\\&\widetilde{N}_2=\widetilde{N}_{33}\widetilde{N}_{44}+\widetilde{N}_{34}\widetilde{N}_{43}-\widetilde{N}_{23}\widetilde{N}_{31} +\widetilde{N}_{11}(\widetilde{N}_{33}+\widetilde{N}_{44})+\widetilde{N}_{12}\widetilde{N}_{21}-\widetilde{N}_{13}\widetilde{N}_{31},\\&\widetilde{N}_3=\widetilde{N}_{11}(\widetilde{N}_{33}\widetilde{N}_{44}+\widetilde{N}_{34}\widetilde{N}_{43}-\widetilde{N}_{23}\widetilde{N}_{31}) -\widetilde{N}_{23}\widetilde{N}_{31}\widetilde{N}_{44}+\widetilde{N}_{12}\widetilde{N}_{21}(\widetilde{N}_{33}+\widetilde{N}_{44})\\&\quad +\widetilde{N}_{12}\widetilde{N}_{23}\widetilde{N}_{31} -\widetilde{N}_{13}\widetilde{N}_{31}(\widetilde{N}_{21}+\widetilde{N}_{44}),\\&\widetilde{N}_4=\widetilde{N}_{12}\{\widetilde{N}_{21}(\widetilde{N}_{33}\widetilde{N}_{44}+\widetilde{N}_{34}\widetilde{N}_{43})+\widetilde{N}_{23}\widetilde{N}_{31} \widetilde{N}_{44}\} -\widetilde{N}_{32}\widetilde{N}_{44}(\widetilde{N}_{11}\widetilde{N}_{23}+\widetilde{N}_{13}\widetilde{N}_{21}) \end{aligned}$$

with

$$\begin{aligned}&\widetilde{N}_{11}=\frac{\beta a\widetilde{Z}^*}{(a+\widetilde{P}^*)^2}-\frac{r_p}{(1+\gamma c_p\widetilde{P}^*\widetilde{E}^*)^2}\left( 1-\frac{\widetilde{P}^*(2+\gamma c_p\widetilde{P}^*\widetilde{E}^*)}{K_p}\right) , \\&\widetilde{N}_{12}=\frac{\beta \widetilde{P}^*}{a+\widetilde{P}^*},\\&\widetilde{N}_{13}=\frac{r_p\gamma c_p(\widetilde{P}^*)^2}{(1+\gamma c_p\widetilde{P}^*\widetilde{E}^*)^2}\left( 1-\frac{\widetilde{P}^*}{K_p}\right) , \ \widetilde{N}_{21}=\frac{a\beta c_z \widetilde{Z}^*}{(a+\widetilde{P}^*)^2}, \ \widetilde{N}_{23}=\gamma c_e\widetilde{Z}^*, \\&\widetilde{N}_{31}=\widetilde{N}_{32}=\gamma \widetilde{E}^*,\\&\widetilde{N}_{33}=d_e+\gamma (\widetilde{P}^*+\widetilde{Z}^*), \ \widetilde{N}_{34}=\frac{r_ebp}{(b+\widetilde{M}^*)^2}, \ \widetilde{N}_{43}=\frac{\phi }{(1+c\widetilde{E}^*)^2}, \ \widetilde{N}_{44}=\phi _0. \end{aligned}$$

Appendix B

$$\begin{aligned}&\widetilde{A}_1=\widetilde{A}_{11}+\widetilde{A}_{22}+\widetilde{A}_{33}+\widetilde{A}_{44},\\&\widetilde{A}_2=\widetilde{A}_{11}(\widetilde{A}_{22}+\widetilde{A}_{33}+\widetilde{A}_{44})+\widetilde{A}_{22}(\widetilde{A}_{33}+\widetilde{A}_{44}) +\widetilde{A}_{33}\widetilde{A}_{44}+\widetilde{A}_{34}\widetilde{A}_{43}\\&\quad +\widetilde{A}_{12}\widetilde{A}_{21}-\widetilde{A}_{23}\widetilde{A}_{32}-\widetilde{A}_{13}\widetilde{A}_{31},\\&\widetilde{A}_3=\widetilde{A}_{22}(\widetilde{A}_{33}\widetilde{A}_{44}+\widetilde{A}_{34}\widetilde{A}_{43})-\widetilde{A}_{23}\widetilde{A}_{32}\widetilde{A}_{44} +\widetilde{A}_{11}\{\widetilde{A}_{22}(\widetilde{A}_{33}+\widetilde{A}_{44})\\&\quad +\widetilde{A}_{33}\widetilde{A}_{44}+\widetilde{A}_{34}\widetilde{A}_{43} -\widetilde{A}_{23}\widetilde{A}_{32}\}\\&\quad +\widetilde{A}_{12}\{\widetilde{A}_{21}(\widetilde{A}_{33}+\widetilde{A}_{44})+\widetilde{A}_{23}\widetilde{A}_{31}\} -\widetilde{A}_{13}\{\widetilde{A}_{31}(\widetilde{A}_{22}+\widetilde{A}_{44})+\widetilde{A}_{21}\widetilde{A}_{32}\},\\&\widetilde{A}_4=\widetilde{A}_{11}\{\widetilde{A}_{22}(\widetilde{A}_{33}\widetilde{A}_{44}+\widetilde{A}_{34}\widetilde{A}_{43}) -\widetilde{A}_{23}\widetilde{A}_{32}\widetilde{A}_{44}\}\\&\quad +\widetilde{A}_{12}\{\widetilde{A}_{21}(\widetilde{A}_{33}\widetilde{A}_{44}+\widetilde{A}_{34}\widetilde{A}_{43}) +\widetilde{A}_{23}\widetilde{A}_{31}\widetilde{A}_{44}\}\\&\quad -\widetilde{A}_{13}(\widetilde{A}_{21}\widetilde{A}_{32}\widetilde{A}_{44}+\widetilde{A}_{22}\widetilde{A}_{31}\widetilde{A}_{44}) \end{aligned}$$

with

$$\begin{aligned}&\widetilde{A}_{11}=\frac{r_p}{(1+\gamma c_p\widetilde{P}_*\widetilde{E}_*)^2}\left( 1-\frac{\widetilde{P}_*(2+\gamma c_p\widetilde{P}_*\widetilde{E}_*)}{K_p}\right) -\frac{\beta a\widetilde{Z}_*}{(a+\widetilde{P}_*)^2}, \ \widetilde{A}_{12}=\frac{\beta \widetilde{P}_*}{a+\widetilde{P}_*},\\&\widetilde{A}_{13}=\frac{r_p\gamma c_p\widetilde{P}^2_*}{(1+\gamma c_p\widetilde{P}_*\widetilde{E}_*)^2}\left( 1-\frac{\widetilde{P}_*}{K_p}\right) , \ \widetilde{A}_{21}=\frac{a\beta c_z \widetilde{Z}_*}{(a+\widetilde{P}_*)^2}, \ \widetilde{A}_{22}=\frac{r_z\widetilde{Z}_*}{K_z}, \\&\widetilde{A}_{23}=\gamma c_e\widetilde{Z}_*,\\&\widetilde{A}_{31}=\widetilde{A}_{32}=\gamma \widetilde{E}_*, \ \widetilde{A}_{33}=d_e+\gamma (\widetilde{P}_*+\widetilde{Z}_*), \ \widetilde{A}_{34}=\frac{r_ebp}{(b+\widetilde{M}_*)^2}, \\&\widetilde{A}_{43}=\frac{\phi }{(1+c\widetilde{E}_*)^2}, \widetilde{A}_{44}=\phi _0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Tiwari, P.K. & Pal, S. Impact of awareness on environmental toxins affecting plankton dynamics: a mathematical implication. J. Appl. Math. Comput. 66, 369–395 (2021). https://doi.org/10.1007/s12190-020-01441-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01441-5

Keywords

Mathematics Subject Classification

Navigation