Skip to main content
Log in

The parallel waveform relaxation stochastic Runge–Kutta method for stochastic differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

For large-scale non-autonomous Stratonovich stochastic differential equations, we study a very general parallel waveform relaxation process which is on the basis of stochastic Runge–Kutta (SRK) method of mean-square order 1.0 in this literature. The convergence of the whole parallel numerical iterative scheme can be guaranteed and the scheme provides better properties in terms of decreasing the load of the computation and operating speed. At the same time, the related limit method is also introduced as the continuous approximation derived from the iterative scheme. In the approximation interval, it is worth noting that the mean-square order of the parallel numerical iterative scheme can be kept consistent with the previous SRK method at any arbitrary time point, not just at discrete points. Some numerical simulations are presented to elaborate the computing efficiency of the parallel numerical iterative scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alfredo, B., Marino, Z.: The use of Runge–Kutta formulae in waveform relaxation methods. Appl. Numer. Math. 11(1–3), 95–114 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Bartoszewski, Z., Jankowski, T., Kwapisz, M.: On the convergence of iterative methods for general differential-algebraic systems. J. Comput. Appl. Math. 169(2), 393–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge–Kutta methods by B-series. SIAM J. Numer. Anal. 38(5), 1626–1646 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, W.R., Zhang, Z.Q., Karniadakis, E.M.G.: Numerical methods for stochastic delay differential equations via the Wong–Zakai approximation. SIAM J. Sci. Comput. 37(1), 295–318 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fan, Z.C.: Discrete-time waveform relaxation method for stochastic delay differential equations. Appl. Math. Comput. 217, 3903–3909 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Fan, Z.C.: Using waveform relaxation methods to approximate neutral stochastic functional differential equation systems. Appl. Math. Comput. 263, 151–164 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Hu, L., Gan, S.Q.: Numerical analysis of the balanced implicit methods for stochastic pantograph equations with jumps. Appl. Math. Comput. 223, 281–297 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Hutzenthaler, M., Jentzen, A., Wang, X.J.: Exponential integrability properties of numerical approximation process for nonlinear stochastic differential equations. Math. Comp. 87(311), 1353–1413 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jackiewicz, Z., Kwapisz, M.: Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J. Numer. Anal. 33(6), 2303–2317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jackiewicz, Z., Kwapisz, M., Lo, E.: Waveform relaxation methods for functional differential systems of neutral type. J. Math. Anal. Appl. 207(1), 255–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Janssen, J., Vandewalle, S.: On SOR waveform relaxation methods. SIAM J. Numer. Anal. 34(6), 2456–2481 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keller, S.H.A., Harald, N.: Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin (2007)

    Google Scholar 

  13. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  14. Lelarasmee, E., Ruehli, A., Sangiovanni-Vincentelli, A.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans, CAD IC Syst. 1, 131–145 (1982)

    Article  Google Scholar 

  15. Li, X.P., Cao, W.R.: On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations. Appl. Math. Comput. 261, 373–381 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Li, Y., Jiang, Y.L., Song, B.: Symplectic waveform relaxation methods for Hamiltonian systems. Appl. Math. Comput. 292, 228–239 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Mao, X.: Stochastic Differential Equations and their Applications. Harwood, Chichester (1997)

    MATH  Google Scholar 

  18. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publishers, Dordrecht (1995)

    Book  Google Scholar 

  19. Nevanlinna, O.: Remarks on Picard–Lindelöf iteration Part I. BIT Numer. Math. 29(2), 328–346 (1989)

    Article  MATH  Google Scholar 

  20. Rößler, A.: Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal. 48(3), 922–952 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sanda, J., Burrage, K.: A jacobi waveform relaxation method for odes. SIAM J. Sci. Comput. 20(2), 534–552 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, X.J., Wu, J.Y., Dong, B.Z.: Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition. BIT Numer. Math. (2020)

  23. Wu, Q., Hu, L., Zhang, Z.J.: Convergence and stability of balanced methods for stochastic delay integro-differential equations. Appl. Math. Comput. 237, 446–460 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Key R&D Program of China (No. 2017YFC1405600), the National Natural Science Foundation of China (No. 11701124), and the Natural Science Foundation of Shandong Province of China (No. ZR2017PA006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Ma, Q. & Ding, X. The parallel waveform relaxation stochastic Runge–Kutta method for stochastic differential equations. J. Appl. Math. Comput. 66, 439–463 (2021). https://doi.org/10.1007/s12190-020-01443-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01443-3

Keywords

Mathematics Subject Classification