Abstract
This paper deals with the stability analysis of a nonlinear time-delayed dispersive equation of order four. First, we prove the well-posedness of the system and give some regularity results. Then, we show that the zero solution of the system exponentially converges to zero when the time tends to infinity provided that the time-delay is small and the damping term satisfies reasonable conditions. Lastly, an intensive numerical study is put forward and numerical illustrations of the stability result are provided.












Similar content being viewed by others
References
Ait Benhassi, E.M., Ammari, K., Boulite, S., Maniar, L.: Feedback stabilization of a class of evolution equations with delay. J. Evol. Equ. 9, 103–121 (2009)
Al-Khaled, K., Haynes, N., Schiesser, W., Usman, M.: Eventual periodicity of the forced oscillations for a Korteweg–de Vries type equation on a bounded domain using a sinc collocation method. J. Comput. Appl. Math. 330, 417–428 (2018)
Al-Musallam, F., Ammari, K., Chentouf, B.: Asymptotic analysis of a 2D overhead crane with input delays in the boundary control. Zeitschrift fur Angewandte Mathematik und Mechanik 98, 1103–1122 (2018)
Ammari, K., Chentouf, B.: Further results on the long-time behavior of a 2D overhead crane with a boundary delay: exponential convergence. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2019.124698
Ammari, K., Chentouf, B.: On the exponential and polynomial convergence for a delayed wave equation without displacement. Appl. Math. Lett. 86, 126–133 (2018)
Ammari, K., Crépeau, E.: Feedback stabilization and boundary controllability of the Korteweg–de Vries equation on a star-shaped network. SIAM J. Control Optim. 56, 1620–1639 (2018)
Ammari, K., Crépeau, E.: Well-posedness and stabilization of the Benjamin–Bona–Mahony equation on star-shaped networks. Syst. Control Lett. 127, 39–43 (2019)
Ammari, K., Nicaise, S.: Stabilization of Elastic Systems by Collocated Feedback. Lecture Notes in Mathematics, vol. 2124. Springer, Cham (2015)
Ammari, K., Nicaise, S., Pignotti, C.: Stability of an abstract-wave equation with delay and a Kelvin–Voigt damping. Asymptot. Anal. 95, 21–38 (2015)
Ammari, K., Nicaise, S., Pignotti, C.: Stabilization by switching time-delay. Asymptot. Anal. 83, 263–283 (2013)
Ammari, K., Nicaise, S., Pignotti, C.: Feedback boundary stabilization of wave equations with interior delay. Syst. Control Lett. 59, 623–628 (2010)
Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998). ISBN 0-89871-412-5
Balogh, A., Gilliam, D.S., Shubov, V.I.: Stationary solutions for a boundary controlled Burgers’ equation. Math. Comput. Model. 33, 21–37 (2001)
Balogh, A., Krstic, M.: Global boundary stabilization and regularization of Burgers’ equation. In: Proceedings of the American Control Conference, San Diego, California, pp. 1712–1716 (1999)
Balogh, A., Krstic, M.: Burgers’ equation with nonlinear boundary feedback: stability, well-posedness and simulation. Math. Probl. Eng. 6, 189–200 (2000)
Biler, P.: Asymptotic behavior in time of solutions to some equations generalizing the Korteweg–de Vries–Burgers equation. Bull. Pol. Acad. Sci. Math. 32, 275–282 (1984)
Biler, P.: Large-time behavior of periodic solutions to dissipative equations of Korteweg–de Vries–Burgers type. Bull. Pol. Acad. Sci. Math. 32, 401–405 (1984)
Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Computations of blow-up and decay for periodic solutions of the generalized Korteweg–de Vries Burgers equation. Appl. Numer. Math. 10, 335–355 (1992)
Bona, J.L., Luo, L.: Decay of solutions to nonlinear, dispersive wave equations. Differ. Integr. Equ. 6, 961–980 (1993)
Bona, J.L., Luo, L.: More results on the decay of solutions to nonlinear dispersive wave equations. Discrete Contin. Dyn. Syst. 1, 151–193 (1995)
Bona, J.L., Dougalis, V.A., Karakashian, A., McKinney, W.R.: The effect of dissipation on solutions of the generalized Korteweg–de Vries equation. J. Comput. Appl. Math. 74, 127–154 (1996)
Boussinesq, J.: Essai sur la théorie des eaux courantes, Mémoires Présentés par Divers Savants à l’Acad. des Sci. Inst. Nat. Fr. 23, 1–680 (1877)
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitex. Springer, Berlin (2011)
Capistrano-Filho, R.A., Zhang, B.Y.: Initial boundary value problem for Korteweg–de Vries equation: a review and open problems. São Paulo J. Math. Sci. 13, 402–417 (2019)
Cerpa, E.: Control of a Korteweg–de Vries equation: a tutorial. Math. Control Relat. Fields 4, 45–99 (2014)
Cerpa, E., Crépeau, E.: Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 26, 457–475 (2009)
Chang, H.C.: Nonlinear waves on liquid film surfaces-II. Flooding in a vertical tube. Chem. Eng. Sci. 41, 2463–2476 (1986)
Chentouf, B.: Compensation of the interior delay effect for a rotating disk-beam system. IMA J. Math. Control Inf. 33(4), 963–978 (2016)
Chentouf, B., Smaoui, N., Alalabi, A.: Nonlinear adaptive boundary control of the modified generalized Korteweg–de Vries–Burgers equation. Complexity 2020, Article ID 4574257, 1–18 (2020)
Cohen, B.I., Krommes, J.A., Tang, W.M., Rosenbluth, M.N.: Nonlinear saturation of the dissipative trapped-ion mode by mode coupling. Nucl. Fusion 16, 971–992 (1976)
Coron, J.M., Crépeau, E.: Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6, 367–398 (2004)
Crépeau, E.: Exact boundary controllability of the Korteweg–de Vries equation with a piecewise constant main coefficient. Syst. Control Lett. 97, 157–162 (2016)
Erdoğan, M.B., Tzirakis, N.: Dispersive Partial Differential Equations. Cambridge University Press, Cambridge (2016)
Ferhat, M., Hakem, A.: Asymptotic behavior for a weak viscoelastic wave equations with a dynamic boundary and time varying delay term. J. Appl. Math. Comput. 51, 509–526 (2016)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1988)
Hussein, A.J., Kashkool, H.A.: Weak Galerkin finite element method for solving one-dimensional coupled Burgers’ equations. J. Appl. Math. Comput. 63, 265–293 (2020)
Jeffrey, A., Kakutani, T.: Weak nonlinear dispersive waves: a discussion centered around the Korteweg–De Vries equation. SIAM Rev. 14, 582–643 (1972)
Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)
Krstic, M.: On global stabilization of Burgers’ equation by boundary control. Syst. Control Lett. 37, 123–142 (1999)
Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction–diffusion systems. Progr. Theor. Phys. 54, 687–699 (1975)
Lighthill, M.J.: On waves generated in dispersive systems to travelling effects, with applications to the dynamics of rotating fluids. J. Fluid Mech. 27, 725–752 (1967)
Linares, F., Pazoto, A.F.: On the exponential decay of the critical generalized Korteweg–de Vries with localized damping. Proc. Am. Math. Soc. 135, 1515–1522 (2007)
Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer-Verlag, New York (2009)
Liu, W.J., Krstic, M.: Adaptive control of Burgers’ equation with unknown viscosity. Int. J. Adapt. Control Signal Process. 15, 745–766 (2001)
Liu, W.J.: Asymptotic behavior of solutions of time-delayed Burgers equation. Discrete Contin. Dyn. Syst.-B 2, 47–56 (2002)
Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)
Pazoto, A.F.: Unique continuation and decay for the Korteweg–de Vries equation with localized damping. ESAIM: Control Optim. Calc. Var. 11, 473–486 (2005)
Perla Menzala, G., Vasconcelos, C.F., Zuazua, E.: Stabilization of the Korteweg–de Vries equation with localized damping. Q. Appl. Math. 60, 111–129 (2002)
Rosier, L.: Exact boundary controllability of the Korteweg–de Vries equation on a bounded domain. ESAIM: COCV 2, 33–55 (1997)
Rosier, L., Zhang, B.Y.: Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain. SIAM J. Control Optim. 45, 927–956 (2006)
Rosier, L., Zhang, B.Y.: Control and stabilization of the Korteweg–de Vries equation: recent progresses. J. Syst. Sci. Complex. 22, 647–682 (2009)
Sivashinsky, G.: Nonlinear analysis for hydrodynamic instability in Laminar flames. Derivation of basic equations. Acta Astronaut. 4, 1177–1206 (1977)
Smaoui, N.: Controlling the dynamics of Burgers equation with a high-order nonlinearity. Int. J. Math. Math. Sci. 62, 3321–3332 (2004)
Smaoui, N.: Nonlinear boundary control of the generalized Burgers equation. Nonlinear Dyn. 37, 75–86 (2004)
Smaoui, N., Al-Jamal, R.: A nonlinear boundary control for the dynamics of the generalized Korteweg–de Vries–Burgers equation. Kuwait J. Sci. Eng. 34, 57–76 (2007)
Smaoui, N., Al-Jamal, R.: Boundary control of the generalized Korteweg–de Vries–Burgers equation. Nonlinear Dyn. 51, 439–446 (2008)
Smaoui, N., El-Kadri, A., Zribi, M.: Adaptive boundary control of the forced generalized Korteweg–de Vries–Burgers equation. Eur. J. Control 16, 72–84 (2010)
Smaoui, N., El-Kadri, A., Zribi, M.: Nonlinear boundary control of the unforced generalized Korteweg–de Vries–Burgers equation. Nonlinear Dyn. 60, 561–574 (2010)
Smaoui, N., Chentouf, B., Alalabi, A.: Boundary linear stabilization of the modified generalized Korteweg–de Vries–Burgers equation. Adv. Differ. Equ. 2019, Article number: 457, 17 pages (2019)
Smaoui, N., Mekkaoui, M.: The generalized Burgers equation with and without a time-delay. J. Appl. Math. Stoch. Anal. 1, 73–96 (2004)
Smaoui, N., Zribi, M.: A finite dimensional control of the dynamics of the generalized Korteweg–de Vries Burgers equation. Appl. Math. Inf. Sci.-Int. J. 3, 207–221 (2009)
Tang, Y., Wang, M.: A remark on exponential stability of time-delayed Burgers equation. Discrete Contin. Dyn. Syst. Ser. B. 12, 219–225 (2009)
Tunç, C.: On the stability of solutions of certain fourth-order delay differential equations. Appl. Math. Mech. (Engl. Edn.) 27, 1141–1148 (2006)
Tunç, C.: On the stability of solutions to a certain fourth-order delay differential equation. Nonlinear Dyn. 51, 71–81 (2008)
Whiham, G.B.: Non-linear dispersive waves. Proc. R. Soc. Ser. A 283, 238–261 (1965)
Whitham, G.B.: Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley, New York (1974)
Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)
Acknowledgements
This work was supported and funded by Kuwait University, Research Grant No. SM05/18. The valuable corrections, suggestions, and comments from the editor and the anonymous referees are greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ammari, K., Chentouf, B. & Smaoui, N. A qualitative study and numerical simulations for a time-delayed dispersive equation. J. Appl. Math. Comput. 66, 465–491 (2021). https://doi.org/10.1007/s12190-020-01446-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-020-01446-0