Abstract
Computing topological indices of molecular structures is a fundamental and classical topic. In organic chemistry, hexagonal and quadrilateral molecular structures are very common. The detour index \(\omega (G)\) of a connected graph G is defined as \(\omega (G)=\sum \nolimits _{\{u,v\}\subseteq V(G)}l_{G}(u,v)\), where \(l_{G}(u,v)\) denotes the detour distance between vertices u and v. In this study, we obtain the explicit analytical expression for detour index of phenylene chains with a fixed number of hexagons. Further minimal and maximal phenylene chains are obtained.




Similar content being viewed by others
References
Amić, D., Trinajstić, N.: On detour matrix. Croat. Chem. Acta 68, 53–62 (1995)
Chen, H., Guo, Q.: Tutte polynomials of alternating polyclic chains. J. Math. Chem. 57, 2248–2260 (2019)
Chen, A., Zhang, F.: Wiener index and perfect matchings in random phenylene chains. MATCH Commun. Math. Comput. Chem. 61, 623–630 (2009)
Du, C.: Minimum detour index of bicyclic graphs. MATCH Commun. Math. Comput. Chem. 68, 357–370 (2012)
Deng, H., Chen, S., Zhang, J.: The PI index of phenylenes. J. Math. Chem. 41, 63–69 (2007)
Fang, W., Cai, Z.Q., Li, X.X.: Minimum detour index of tricyclic graphs. J. Chem. 6031568 (2019)
Furtula, B., Gutman, I.: Energy and Estrada index of phenylenes. Indian. J. Chem. A. 47, 220–224 (2008)
Furtula, B., Gutman, I., Zeljko, T., Vesel, A., Pesek, I.: Wiener-type topological indices of phenylenes. Indian. J. Chem. A. 41, 1767–1772 (2002)
Gutman, I., Furtula, B.: A Kekulé structure basis for phenylenes. J. Mol. Struct. 770, 67–71 (2006)
Gutman, I., Ashrafi, A.R.: On the PI index of phenylenes and their hexagonal squeezes. MATCH Commun. Math. Comput. Chem. 60, 135–142 (2008)
Gutman, I., Klavžar, S.: Relations between Wiener numbers of benzenoid hydrocarbons and phenylenes. ACH Models Chem. 135, 45–55 (1998)
Lukovits, I.: The detour index. Croat. Chem. Acta 69, 873–882 (1996)
Milosavljevic, N., Stevanovic, D.: Detour index of hexagonal chains. MATCH Commun. Math. Comput. Chem. 72, 137–152 (2014)
Nikolić, S., Trinajstić, N., Mihalić, Z.: The Wiener index: developments and applications. Croat. Chem. Acta 68, 105–129 (1995)
Qi, X., Zhou, B.: Detour index of a class of unicyclic graphs. Filomat 24, 29–40 (2010)
Qi, X., Zhou, B.: Maximum detour index of unicyclic graphs with given maximum degree. ARS Combin. 102, 193–200 (2011)
Qi, X., Zhou, B.: Hyper-detour index of unicyclic graphs. MATCH Commun. Math. Comput. Chem. 66, 329–342 (2011)
Raza, Z.: The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains. Heliyon 6, e04479 (2020)
Trinajstić, N., Nikolić, S., Lučić, B., Amić, D., Mihalić, Z.: The detour matrix in chemistry. J. Chem. Inf. Comput. Sci. 37, 631–638 (1997)
Vollhardt, K.P.C.: The phenylenes. Pure Appl. Chem. 65, 153–156 (1993)
Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)
Zhou, B., Cai, X.: On detour index. MATCH Commun. Math. Comput. Chem. 63, 199–210 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Research supported by the National Natural Science Foundation of China (through Grant No. 11971180, 11571123), the Guangdong Provincial Natural Science Foundation of China (through Grant No. 2019A1515012052).
Rights and permissions
About this article
Cite this article
Liu, H., Fang, X. Extremal phenylene chains with respect to detour indices. J. Appl. Math. Comput. 67, 301–316 (2021). https://doi.org/10.1007/s12190-020-01483-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-020-01483-9