Skip to main content

Advertisement

Log in

On Connected Graphs Having the Maximum Connective Eccentricity Index

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The connective eccentricity index (CEI) of a connected graph G is defined as \(\xi ^{ee}(G)=\sum _{u\in V_G}[d_G(u)/\varepsilon _G(u)]\), where \(d_G(u)\) and \(\varepsilon _G(u)\) are the degree and eccentricity, respectively, of the vertex \(u\in V_G\) of G. In this paper, graphs with the maximum CEI are characterized from the class of all connected graphs of a fixed order and size. Graphs having maximum CEI are also determined from some other well-known classes of connected graphs of a given order; namely, the Halin graphs, triangle-free graphs, planar graphs and outer-planar graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ashrafi, A.R., Saheli, M., Ghorbani, M.: The eccentric connectivity index of nanotubes and nanotori. J. Comput. Appl. Math. 235, 4561–4566 (2011)

    Article  MathSciNet  Google Scholar 

  2. Basavaraju, M.: Acyclic chromatic index of fully subdivided graphs and Halin graphs. Discrete Math. Theor. Comput. Sci. 14, 165–172 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics, vol. 244. Springer, Berlin (2008)

    Google Scholar 

  4. Chan, W., Lam, P., Shiu, W.C.: Edge-face total chromatic number of Halin graphs. SIAM J. Discrete Math. 23, 1646–1654 (2009)

    Article  MathSciNet  Google Scholar 

  5. Chartrand, G., Lesniak, L., Zhang, P.: Graphs & Digraphs, 6th edn. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  6. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. Henri Poincaré 3, 433–438 (1967)

    MathSciNet  MATH  Google Scholar 

  7. Chen, M., Wang, W.: The 2-dipath chromatic number of Halin graphs. Inform. Process. Lett. 99, 47–53 (2006)

    Article  MathSciNet  Google Scholar 

  8. Dankelmann, P., Goddard, W., Swart, C.S.: The average eccentricity of a graph and its subgraphs. Util. Math. 65, 41–51 (2004)

    MathSciNet  MATH  Google Scholar 

  9. De, N.: Bounds for connective eccentric index. Int. J. Contemp. Math. Sci. 7(44), 2161–2166 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Dureja, H., Gupta, S., Madan, A.K.: Predicting anti-HIV-1 activity of 6-arylbenzonitriles: computational approach using superaugmented eccentric connectivity topochemical indices. J. Mol. Graph. Model. 26, 1020–1029 (2008)

    Article  Google Scholar 

  11. Ghorbani, M.: Connective eccentric index of fullerenes. J. Math. Nanoscience 1, 43–52 (2011)

    Google Scholar 

  12. Ghorbani, M., Malekjani, K.: A new method for computing the eccentric connectivity index of fullerenes. Serdica J. Comput. 6, 299–308 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Gupta, S., Singh, M., Madan, A.K.: Connective eccentricity index: a novel topological descriptor for predicting biological activity. J. Mol. Graph. Model. 18, 18–25 (2000)

    Article  Google Scholar 

  14. Gupta, S., Singh, M., Madan, A.K.: Application of graph theory: relationship of eccentric connectivity index and Wiener index with anti-inflammatory activity. J. Math. Anal. Appl. 266, 259–268 (2002)

    Article  MathSciNet  Google Scholar 

  15. Gupta, S., Singh, M., Madan, A.K.: Eccentric distance sum: a novel graph invariant for predicting biological and physical properties. J. Math. Anal. Appl. 275(1), 386–401 (2002)

    Article  MathSciNet  Google Scholar 

  16. Halin, R.: Über simpliziable Zerfallungen beliebiger. Math. Ann. 156, 216–225 (1964)

    Article  MathSciNet  Google Scholar 

  17. He, C.L., Li, S.C., Wang, M.T.: On the extremal graphs of diameter 2 with respect to the eccentric resistance-distance sum. Discrete Appl. Math. 221, 71–81 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ilić, A.: On the extremal properties of the average eccentricity. Comput. Math. Appl. 64, 2877–2885 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kumar, V., Sardana, S., Madan, A.K.: Predicting anti-HIV activity of 2, 3-diaryl-1, thiazolidin-4-ones: computational approach using reformed eccentric connectivity index. J. Mol. Model. 10, 399–407 (2004)

    Article  Google Scholar 

  20. Lai, H., Lih, K., Tsai, P.: The strong chromatic index of Halin graphs. Discrete Math. 312, 1536–1541 (2012)

    Article  MathSciNet  Google Scholar 

  21. Li, H., Li, S.C., Zhang, H.: On the maximal connective eccentricity index of bipartite graphs with some given parameters. J. Math. Anal. Appl. 454, 453–467 (2017)

    Article  MathSciNet  Google Scholar 

  22. Li, S.C.: Sharp bounds on the eccentric distance sum of graphs. In: Gutman, I., et al. (eds.) Bounds in Chemical Graph Theory–Mainstreams, pp. 207–237. University of Kragujevac, Kragujevac (2017)

    Google Scholar 

  23. Li, S.C., Meng, X.: Four edge-grafting theorems on the reciprocal degree distance of graphs and their applications. J. Comb. Optim. 30, 468–488 (2015)

    Article  MathSciNet  Google Scholar 

  24. Li, S.C., Song, Y.B.: On the sum of all distances in bipartite graphs. Discrete Appl. Math. 169, 176–185 (2014)

    Article  MathSciNet  Google Scholar 

  25. Li, S.C., Wei, W.: Some edge-grafting transformations on the eccentricity resistance-distance sum and their applications. Discrete Appl. Math. 211, 130–142 (2016)

    Article  MathSciNet  Google Scholar 

  26. Li, S.C., Wu, Y.Y.: On the extreme eccentric distance sum of graphs with some given parameters. Discrete Appl. Math. 206, 90–99 (2016)

    Article  MathSciNet  Google Scholar 

  27. Li, S.C., Zhang, M., Yu, G.H., Feng, L.H.: On the extremal values of the eccentric distance sum of trees. J. Math. Anal. Appl. 390, 99–112 (2012)

    Article  MathSciNet  Google Scholar 

  28. Li, S.C., Zhao, L.F.: On the extremal total reciprocal edge-eccentricity of trees. J. Math. Anal. Appl. 433, 587–602 (2016)

    Article  MathSciNet  Google Scholar 

  29. Mantel, W.: Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Wiskundige Opgaven 10, 60–61 (1907)

    Google Scholar 

  30. Sardana, S., Madan, A.K.: Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor. J. Mol. Model. 8, 258–265 (2002)

    Article  Google Scholar 

  31. Sedlar, J.: On augmented eccentric connectivity index of graphs and trees. MATCH Commun. Math. Comput. Chem. 68, 325–342 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Sharma, V., Goswami, R., Madan, A.K.: Eccentric connectivity index: a novel highly discriminating topological descriptor for structure property and structure activity studies. J. Chem. Inf. Comput. Sci. 37, 273–282 (1997)

    Article  Google Scholar 

  33. Wiener, H.: Structural determination of paraffin boiling point. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  34. Yu, G.H., Feng, L.H.: On the connective eccentricity index of graphs. MATCH Commun. Math. Comput. Chem. 69, 611–628 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Yu, G.H., Qu, H., Tang, L., Feng, L.H.: On the connective eccentricity index of trees and unicyclic graphs with given diameter. J. Math. Anal. Appl. 420, 1776–1786 (2014)

    Article  MathSciNet  Google Scholar 

  36. Wang, G., Yan, L., Zaman, S., Zhang, M.J.: The connective eccentricity index of graphs and its applications to octane isomers and benzenoid hydrocarbons. Int. J. Quantum Chem. 120, e26334 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, S., Ali, A. On Connected Graphs Having the Maximum Connective Eccentricity Index. J. Appl. Math. Comput. 67, 131–142 (2021). https://doi.org/10.1007/s12190-020-01489-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01489-3

Keywords

Mathematics Subject Classification