Skip to main content
Log in

Numerical method for a non-local boundary value problem with Caputo fractional order

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A non-local boundary value problem with Caputo fractional derivative of order \(1<\nu <2\) is considered in this article. A numerical method comprising of an upwind difference scheme which is used to approximate the convection term and an \(L_2\) approximation of Caputo fractional derivative on an uniform mesh is constructed. Error estimate is derived. Numerical results are presented which validate our numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oustaloup, A.: Systems Asservis Linaires d’ordre Fractionnaire. Masson, Paris (1983)

    Google Scholar 

  2. Magin, R.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  3. Kaur, A., Takhar, S., Smith, M., Mann, E., Brashears, M.M.: Fractional differential equations based modeling of microbial survival and growth curves: model development and experimental validation. Food Eng. Phys. Properties 73, 403–414 (2008)

    Google Scholar 

  4. Diethelm, Kai: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  5. Cabada, A., Wanassi, O.K.: Existence results for nonlinear fractional problems with non homogeneous integral boundary conditions. Math. Comput. Sci. 8, 1–15 (2020)

    Google Scholar 

  6. Cabada, A., Aleksić, S., Tomović, T.V., Dimitrijević, S.: Existence of solutions of nonlinear and non-local fractional boundary value problems. Mediterr. J. Math. 16, 1–20 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, P., Gao, Y.: Positive solutions for a class of nonlinear fractional differential equations with nonlocal boundary value conditions. Positivity 22, 761–772 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta. Appl. Math. 109, 973–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chergui, D., Oussaeif, T.E., Ahcene, M.: Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Math. 4, 112–133 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gadzova, LKh: Nonlocal boundary value problem for a linear ordinary differential equation with fractional discretely distributed differentiation operator. Math. Notes 106, 904–908 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, P., Xu, C.: Boundary value problems of fractional order differential equation with integral boundary conditions and not instantaneous impulses. J. Function Spaces 2015, 904–908 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Arqub, O.A.: Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 55, 1–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arqub, O.A.: Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space. Fundamenta Inform. 166, 87–110 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Naik, P.A., Zu, J., Owolabi, K.M.: Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Chaos, Solitons and Fractals 138, 1–24 (2020)

    Article  MathSciNet  Google Scholar 

  15. Naik, P.A., Owolabi, K.M., Yavuz, M., Zu, J.: Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos, Solitons and Fractals 140, 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  16. Pedas, A., Tamme, E.: Piewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 236, 3349–3359 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35, 1–24 (2014)

    MathSciNet  Google Scholar 

  18. Gracia, J.L., Stynes, M.: Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273, 103–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cen, Z., Huang, J., Xu, A.: An efficient numerical method for a two-point boundary value problem with a Caputo fractional derivative. J. Comput. Appl. Math. 336, 1–7 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value problem. BIT Numer. Math. 55, 1105–1123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. El-Ajou, A., Arqub, O., Momani, S.: Solving fractional two-point boundary value problems using continuous analytic method. Ain Shams Eng. J. 4, 539–547 (2013)

    Article  Google Scholar 

  22. Santra, S., Mohapatra, J.: Analysis of the L1 scheme for a time fractional parabolic-elliptic problem involving weak singularity. Math. Meth. Appl. Sci. 44, 1–13 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 1–25 (2015)

    MathSciNet  Google Scholar 

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  25. Brunner, H., Pedas, A., Vainikko, G.: Piecewise polynomial collocation methods for linear volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39, 957–982 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Al-Refai, M.: Basic results on nonlinear eigenvalue problems of fractional order. Electron. J. Differ. Equ. 191, 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Sousa, E.: How to approximate the fractional derivative of order. Int. J. Bifurc. Chaos 22, 1–13 (2012)

    Article  MathSciNet  Google Scholar 

  28. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Applied Mathematics. Chapman & Hall/CRC, Florida (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The first authour wishes to thank Bharathidasan University for its financial support under URF scheme. The authors wish to thank Department of Science and Technology, Government of India, for the computing facility under DST- PURSE phase II Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayyadurai Tamilselvan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mary, S.J.C., Tamilselvan, A. Numerical method for a non-local boundary value problem with Caputo fractional order. J. Appl. Math. Comput. 67, 671–687 (2021). https://doi.org/10.1007/s12190-021-01501-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01501-4

Keywords

Mathematics Subject Classification

Navigation