Skip to main content
Log in

Fractional methicillin-resistant Staphylococcus aureus infection model under Caputo operator

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This study provides a detailed exposition of in-hospital community-acquired methicillin-resistant S. aureus (CA-MRSA) which is a new strain of MRSA, and hospital-acquired methicillin-resistant S. aureus (HA-MRSA) employing Caputo fractional operator. These two strains of MRSA, referred to as staph, have been a serious problem in hospitals and it is known that they give rise to more deaths per year than AIDS. Hence, the transmission dynamics determining whether the CA-MRSA overtakes HA-MRSA is analyzed by means of a non-local fractional derivative. We show the existence and uniqueness of the solutions of the fractional staph infection model through fixed-point theorems. Moreover, stability analysis and iterative solutions are furnished by the recursive procedure. We make use of the parameter values obtained from the Beth Israel Deaconess Medical Center. Analysis of the model under investigation shows that the disease-free equilibrium existing for all parameters is globally asymptotically stable when both \({\mathscr {R}}_0^H\) and \({\mathscr {R}}_0^C\) are less than one. We also carry out the sensitivity analysis to identify the most sensitive parameters for controlling the spread of the infection. Additionally, the solution for the above-mentioned model is obtained by the Laplace-Adomian decomposition method and various simulations are performed by using convenient fractional-order \(\alpha \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brauer, F.: Compartmental models in epidemiology. In: Mathematical Epidemiology (pp. 19–79). Springer, Berlin (2008)

  2. Byrne, J.P. (ed.): Encyclopedia of Pestilence, Pandemics, and Plagues. Greenwood Press, West Port (2008)

    Google Scholar 

  3. Djuretic, T., Herbert, J., Drobniewski, F., Yates, M., Smith, E.G., Magee, J.G., Crowe, M.: Antibiotic resistant tuberculosis in the United Kingdom: 1993–1999. Thorax 57(6), 477–482 (2002)

  4. Gruson, D., Hilbert, G., Vargas, F., Valentino, R., Bebear, C., Allery, A., Cardinaud, J.P.: Rotation and restricted use of antibiotics in a medical intensive care unit: impact on the incidence of ventilator-associated pneumonia caused by antibiotic-resistant gram-negative bacteria. Am. J. Respirat. Crit. Care Med. 162(3), 837–843 (2000)

  5. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Joint United Nations Programme on HIV/AIDS. (2010). Global report: UNAIDS report on the global AIDS epidemic 2010. Unaids

  7. Bernoulli, D., Blower, S.: An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it. Rev. Med. Virol. 14(5), 275 (2004)

    Article  Google Scholar 

  8. Hamer, W.H.: Epidemic Disease in England: The Evidence of Variability and of Persistency of Type. Bedford Press, Bedford (1906)

    Google Scholar 

  9. Nagle, R.K., Saff, E.B., Snider, A.D.: Fundamentals of differential equations. Pearson Education (2014)

  10. Qureshi, S., Yusuf, A.: Modeling chickenpox disease with fractional derivatives:fFrom caputo to atangana-baleanu. Chaos Solitons Fract. 122, 111–118 (2019)

    Article  MATH  Google Scholar 

  11. Qureshi, S., Yusuf, A.: Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator. Chaos Solitons Fract. 126, 32–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl 1(2), 1–13 (2015)

    Google Scholar 

  13. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv preprint arXiv:1602.03408 (2016)

  14. Baleanu, D., Fernandez, A.: On fractional operators and their classifications. Mathematics 7(9), 830 (2019)

    Article  Google Scholar 

  15. Yavuz, M.: Novel solution methods for initial boundary value problems of fractional order with conformable differentiation. Int. J. Optim. Control: Theories Appl. (IJOCTA) 8(1), 1–7 (2017)

    MathSciNet  Google Scholar 

  16. Baleanu, D., Fernandez, A., Akgül, A.: On a fractional operator combining proportional and classical differintegrals. Mathematics 8(3), 360 (2020)

    Article  Google Scholar 

  17. Qureshi, S., Yusuf, A., Shaikh, A.A., Inc, M., Baleanu, D.: Fractional modeling of blood ethanol concentration system with real data application. Chaos: Interdiscip. J. Nonlinear Sci. 29(1), 013143 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yusuf, A., Inc, M., Aliyu, A.I.: On dark optical solitons of the space time nonlinear Schrödinger equation with fractional complex transform for Kerr and power law nonlinearities. J. Coupl. Syst. Multisc. Dyn. 6(2), 114–120 (2018)

    Article  Google Scholar 

  19. Acay, B., Bas, E., Abdeljawad, T.: Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solitons Fract. 130, 109438 (2020)

    Article  MathSciNet  Google Scholar 

  20. Acay, B., Bas, E., Abdeljawad, T.: Non-local fractional calculus from different viewpoint generated by truncated M-derivative. J. Comput. Appl. Math. 366, 112410 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bas, E., Acay, B., Ozarslan, R.: The price adjustment equation with different types of conformable derivatives in market equilibrium (2019)

  22. Acay, B., Ozarslan, R., Bas, E.: Fractional physical models based on falling body problem. AIMS Math. 5(3), 2608 (2020)

    Article  MathSciNet  Google Scholar 

  23. D’Agata, E.M., Webb, G.F., Pressley, J.: Rapid emergence of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains in the hospital setting. Math. Model. Nat. Phenomena 5(3), 76–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations (Vol. 204). Elsevier, Amsterdam (2006)

  25. Pressley, J., D’Agata, E.M., Webb, G.F.: The effect of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains on competitive exclusion. J. Theor. Biol. 264(3), 645–656 (2010)

    Article  MATH  Google Scholar 

  26. Wang, Z., Yang, D., Ma, T., Sun, N.: Stability analysis for nonlinear fractional-order systems based on comparison principle. Nonlinear Dyn. 75(1–2), 387–402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Naghipour, A., Manafian, J.: Application of the Laplace Adomian decomposition and implicit methods for solving Burgers’ equation. TWMS J. Pure Appl. Math. 6(1), 68–77 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Shah, K., Bushnaq, S.: Numerical treatment of fractional endemic disease model via Laplace Adomian decomposition method. J. Sci. Arts 17(2), 257 (2017)

    MathSciNet  Google Scholar 

  29. Akinlar, M.A., Tchier, F., Inc, M.: Chaos control and solutions of fractional-order Malkus waterwheel model. Chaos Solitons Fract. 135, 109746 (2020)

    Article  MathSciNet  Google Scholar 

  30. Qureshi, S., Yusuf, A., Ali Shaikh, A., Inc, M., Baleanu, D.: Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels. Chaos: Interdiscip. J. Nonlinear Sci. 30(4), 043106 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Haq, F., Shah, K., ur Rahman, G., Shahzad, M.: Numerical solution of fractional order smoking model via laplace Adomian decomposition method. Alexandria Eng. J. 57(2), 1061–1069 (2018)

  33. Farman, M., Saleem, M.U., Ahmad, A., Ahmad, M.O.: Analysis and numerical solution of SEIR epidemic model of measles with non-integer time fractional derivatives by using Laplace Adomian Decomposition Method. Ain Shams Eng. J. 9(4), 3391–3397 (2018)

    Article  Google Scholar 

  34. Sweilam, N. H., AL-Mekhlafi, S. M., Albalawi, A. O.: Optimal control for a fractional order malaria transmission dynamics mathematical model. Alexandria Eng. J. (2020)

  35. Sweilam, N.H., Al-Mekhlafi, S.M., Albalawi, A.O., Baleanu, D.: On the optimal control of coronavirus (2019-nCov) mathematical model; a numerical approach. Adv. Differ. Equ. 2020(1), 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  36. Sweilam, N. H., Al-Mekhlafi, S. M., & Baleanu, D.: A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model. J. Adv. Res. (2020)

  37. Djilali, S., Ghanbari, B., Bentout, S., Mezouaghi, A.: Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative. Chaos Solitons Fract. 138, 109954 (2020)

    Article  MathSciNet  Google Scholar 

  38. Soufiane, B., Touaoula, T.M.: Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. Appl. 434(2), 1211–1239 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Djilali, S., Bentout, S.: Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Applicandae Mathematicae 1–19 (2019)

  40. Ghanbari, B., Djilali, S.: Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative. Math. Methods Appl. Sci. 43(4), 1736–1752 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Souna, F., Djilali, S., Charif, F.: Mathematical analysis of a diffusive predator-prey model with herd behavior and prey escaping. Math. Model. Nat. Phenomena 15, 23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Djilali, S.: Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition. Math. Methods Appl. Sci. 43(5), 2233–2250 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Djilali, S.: Effect of herd shape in a diffusive predator-prey model with time delay. J. Appl. Anal. Comput 9(2), 638–654 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Acay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acay, B., Inc, M., Khan, A. et al. Fractional methicillin-resistant Staphylococcus aureus infection model under Caputo operator. J. Appl. Math. Comput. 67, 755–783 (2021). https://doi.org/10.1007/s12190-021-01502-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01502-3

Keywords

Mathematics Subject Classification