Skip to main content

Advertisement

Log in

A stochastic epidemic model with infectivity in incubation period and homestead–isolation on the susceptible

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A stochastic epidemic model with infectivity rate in incubation period and homestead–isolation on the susceptible is developed with the aim of revealing the effect of stochastic white noise on the long time behavior. A good understanding of extinction and strong persistence in the mean of the disease is obtained. Also, we derive sufficient criteria for the existence of a unique ergodic stationary distribution of the model. Our theoretical results show that the suitably large noise can make the disease extinct while the relatively small noise is advantageous for persistence of the disease and stationary distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kermack, W.O., Mckendrick, A.G.: Combined effects of prevention and quarantine on a breakout in SIR model. Proc. R. Soc. Edin. A 115, 700–721 (1927)

    MATH  Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York (1991)

    Google Scholar 

  3. Cooke, K., Van Den Driessche, P.: Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35, 240–260 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Ruan, S.G., Wang, W.D.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188, 135–163 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Wang, W.D.: Epidemic models with nonlinear infection forces. Math. Biosci. Eng. 3, 267–279 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Cai, Y.L., Kang, Y., Banerjee, M., Wang, W.M.: A stochastic SIRS epidemic model with infectious force under intervention strategies. J. Differ. Equ. 259, 7463–7502 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Wang, J.L., Yang, J., Kuniya, T.: Dynamics of a PDE viral infection model incorporating cell-to-cell transmission. J. Math. Anal. Appl. 444, 1542–1564 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Wang, L.W., Liu, Z.J., Zhang, X.A.: Global dynamics for an age-structured epidemic model with media impact and incomplete vaccination. Nonlinear Anal. Real World Appl. 32, 136–158 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Li, S.P., Jin, Z.: Impacts of cluster on network topology structure and epidemic spreading. Discrete Contin. Dyn. Syst. Ser. B 22, 3749–3770 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Liu, Z.J., Hu, J., Wang, L.W.: Modelling and analysis of global resurgence of mumps: a multi-group epidemic model with asymptomatic infection, general vaccinated and exposed distributions. Nonlinear Anal. Real World Appl. 37, 137–161 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Li, J.Q., Wang, X.Q., Lin, X.L.: Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Math. Biosci. Eng. 15, 1425–1434 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Xu, C.Y., Li, X.Y.: The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination. Chaos Solitons Fractals 111, 227–234 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Liu, Z.Z., Shen, Z.W., Wang, H., Jin, Z.: Analysis of a local diffusive SIR model with seasonality and nonlocal incidence of infection. SIAM J. Appl. Math. 79, 2218–2241 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Mu, X.J., Zhang, Q.M., Rong, L.B.: Optimal vaccination strategy for an SIRS model with imprecise parameters and Lévy noise. J. Frankl. Inst. 356, 11385–11413 (2019)

    MATH  Google Scholar 

  15. Liu, L.L., Xu, R., Jin, Z.: Global dynamics of a spatial heterogeneous viral infection model with intracellular delay and nonlocal diffusion. Appl. Math. Model. 82, 150–167 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differnetial equation SIS epidemic model. SIAM J. Appl. Math. 71, 876–902 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Liu, Q., Jiang, D.Q., Shi, N.Z., Hayat, T., Ahmad, B.: Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence. Phys. A 476, 58–69 (2017)

    MathSciNet  Google Scholar 

  18. Feng, T., Qiu, Z.P., Meng, X.Z.: Dynamics of a stochastic hepatitis C virus system with host immunity. Discrete Contin. Dyn. Syst. Ser. B 24, 6367–6385 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Wei, F.Y., Chen, L.H.: Extinction and stationary distribution of an epidemic model with partial vaccination and nonlinear incidence rate. Phys. A 545, 122852, 10pp (2020)

  20. Cao, Z.W., Shi, Y., Wen, X.D., Liu, L.Y., Hu, J.W.: Analysis of a hybrid switching SVIR epidemic model with vaccination and Lévy noise. Phys. A 537, 122749, 17pp (2020)

  21. Liu, X.N., Wang, Y., Zhao, X.Q.: Dynamics of a climate-based periodic Chikungunya model with incubation period. Appl. Math. Model. 80, 151–168 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Zhao, Z., Chen, L.S., Song, X.Y.: Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate. Math. Comput. Simul. 79, 500–510 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Yang, Q.S., Mao, X.R.: Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations. Nonlinear Anal. Real World Appl. 14, 1434–1456 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Liu, M., Bai, C.Z., Wang, K.: Asymptotic stability of a two-group stochastic SEIR model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 19, 3444–3453 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Liu, Q., Jiang, D.Q., Shi, N.Z., Hayat, T., Ahmad, A.: Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence. Phys. A 462, 870–882 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Tian, B.C., Yuan, R.: Traveling waves for a diffusive SEIR epidemic model with non-local reaction. Appl. Math. Model. 50, 432–449 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Han, S.Y., Lei, C.X.: Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence. Appl. Math. Lett. 98, 114–120 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Abta, A., Kaddar, A., Alaoui, H.T.: Global stability for delay SIR and SEIR epidemic models with saturated incidence rates. Electron. J. Differ. Equ. 386, 956–965 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Lv, G.C., Lu, Z.Y.: Global asymptotic stability for the SEIRS models with varying total population size. Math. Biosci. 296, 17–25 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Zhao, D.L., Sun, J.B., Tan, Y.J., Wu, J.H., Dou, Y.J.: An extended SEIR model considering homepage effect for the information propagation of online social networks. Phys. A 512, 1019–1031 (2018)

    MathSciNet  Google Scholar 

  31. National Health Commission of the People’s Republic of China. (2020). http://www.nhc.gov.cn/. Accessed 26 Jan 2020

  32. Cheng, V.C.C., Wong, S.C., Chuang, V.W.M., So, S.Y.C., Chen, J.H.K., Sridhar, S., To, K.K.W., Chan, J.F.W., Hung, I.F.N., Ho, P.L., Yuen, K.Y.: The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. J. Infect. 81, 107–114 (2020)

    Google Scholar 

  33. Chu, D.K., Akl, E.A., Duda, S., et al.: Physical distancing, face masks, and eye protection to prevent person-to-person transmission of sars-cov-2 and covid-19: a systematic review and meta-analysis. Lancet 395, 1973–1987 (2020)

    Google Scholar 

  34. Feng, S., Shen, C., Xia, N., Song, W., Fan, M., CowlingCowling, B.J.: Rational use of face masks in the COVID-19 pandemic. Lancet Respir. Med. 8, 434–436 (2020)

    Google Scholar 

  35. Maier, B.F., Brockmann, D.: Effective containment explains subexponential growth in recent confirmed COVID-19 cases in china. Science 368, 742–746 (2020)

    MathSciNet  Google Scholar 

  36. Wilder-Smith, A., Freedman, D.O.: Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J. Travel Med. 27, 1–4 (2020)

    Google Scholar 

  37. Wu, Z., McGoogan, J.M.: Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242 (2020)

    Google Scholar 

  38. Jiao, J.J., Liu, Z.Z., Cai, S.H.: Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible. Appl. Math. Lett. 107, 106442, 7pp (2020)

  39. Arnold, L., Horsthemke, W., Stucki, J.W.: The influence of external real and white noise on the Lotka–Volterra model. Biom. J. 21, 451–471 (1979)

    MathSciNet  MATH  Google Scholar 

  40. Zhou, Y.L., Zhang, W.G., Yuan, S.L.: Survival and stationary distribution of a SIR epidemic model with stochastic perturbations. Appl. Math. Comput. 244, 118–131 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, X.B., Wang, X.D., Huo, H. F.: Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity. Phys. A 531, 121548, 14pp (2019)

  42. Lewontin, R.C., Cohen, D.: On population growth in a randomly varying environment. Proc. Nat. Acad. Sci. 62, 1056–1060 (1969)

    MathSciNet  Google Scholar 

  43. Zhang, X.H., Jiang, D.Q., Hayat, T., Alsaedi, A.: Periodic solution and stationary distribution of stochastic S-DI-A epidemic models. Appl. Anal. 97, 179–193 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Qi, H.K., Leng, X.N., Meng, X.Z., Zhang, T.H.: Periodic solution and ergodic stationary distribution of SEIS dynamical systems with active and latent patients. Qual. Theory Dyn. Syst. 18, 347–369 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, X.H., Wang, K.: Stochastic SEIR model with jumps. Appl. Math. Comput. 239, 133–143 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Boukanjime, B., Caraballo, T., El Fatini, M., El Khalifi, M.: Dynamics of a stochastic coronavirus (COVID-19) epidemic model with Markovian switching. Chaos Solitons Fractals (2020). https://doi.org/10.1016/j.chaos.2020.110361

    Article  MathSciNet  Google Scholar 

  47. Li, F., Zhang, S.Q., Meng, X.Z.: Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function. Comput. Appl. Math. 38, 95, 30pp (2019)

  48. Xu, R., Guo, R.: Pontryagin’s maximum principle for optimal control of stochastic SEIR models. Complexity 2020, 1–5 (2020)

    MATH  Google Scholar 

  49. Allen, L.J.S., Burgin, A.M.: Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci. 163, 1–33 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Artalejo, J.R., Economou, A., Lopez-Herrero, M.J.: The stochastic SEIR model before extinction: computational approaches. Appl. Math. Comput. 265, 1026–1043 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Engbert, R., Rabe, M.M., Kliegl, R., Reich, S.: Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics. Bull. Math. Biol. (2021). https://doi.org/10.1101/2020.04.13.20063768

    Article  MathSciNet  MATH  Google Scholar 

  52. Mao, X.R., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Appl. 97, 95–110 (2002)

    MathSciNet  MATH  Google Scholar 

  53. Dalal, N., Greenhalgh, D., Mao, X.R.: A stochastic model of AIDS and condom use. J. Math. Anal. Appl. 325, 36–53 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Zhao, Y.N., Jiang, D.Q.: The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl. Math. Lett. 34, 90–93 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Cai, S., Cai, Y., Mao, X.: A stochastic differential equation SIS epidemic model with two correlated Brownian motions. Nonlinear Dyn. 97, 2175–2187 (2019)

    MATH  Google Scholar 

  56. Mummert, A., Otunuga, O.M.: Parameter identification for a stochastic SEIRS epidemic model: case study influenza. J. Math. Biol. 79, 705–729 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Beretta, E., Kolmanovskii, V., Shaikhet, L.: Stability of epidemic model with time delays influenced by stochastic perturbations. Math. Comput. Simul. 45, 269–277 (1998)

    MathSciNet  MATH  Google Scholar 

  58. Hussain, G., Khan, A., Zahri, M., Zaman, G.: Stochastic permanence of an epidemic model with a saturated incidence rate. Chaos Solitons Fractals 139, 110005, 7pp (2020)

  59. Jiang, D.Q., Yu, J.J., Ji, C.Y., Shi, N.Z.: Asymptotic behavior of global positive solution to a stochastic SIR model. Math. Comput. Modell. 54, 221–232 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Mao, X.R.: Stochastic Differential Equations and Applications, vol. 47. Horwood Publishing, Chichester (2007)

    MATH  Google Scholar 

  61. Hasminskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff Noordhoff, Alphen aan den Rijn, The Netherlands (1980)

    Google Scholar 

  62. Liu, Q., Jiang, D.Q., Shi, N.Z.: Threshold behavior in a stochastic SIQR epidemic model with stansard incidence and regime switching. Appl. Math. Comput. 316, 310–325 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the NNSF of China (Nos. 11871201, 11961023), and the NSF of Hubei Province, China (No. 2019CFB241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangguan, D., Liu, Z., Wang, L. et al. A stochastic epidemic model with infectivity in incubation period and homestead–isolation on the susceptible. J. Appl. Math. Comput. 67, 785–805 (2021). https://doi.org/10.1007/s12190-021-01504-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01504-1

Keywords

Mathematics Subject Classification