Skip to main content

Advertisement

Log in

Optimal control analysis of bluetongue virus transmission in patchy environments connected by host and wind-aided midge movements

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Bluetongue, a midge-borne disease of ruminants caused by the bluetongue virus (BTV) can rapidly spread from one region (patch) to another by host and/or midge movements, making its control difficult. A multi-patch deterministic model for BTV is formulated and analysed to evaluate the effectiveness of vaccination, quarantine, insecticide spraying and the use of repellent control strategies in reducing the within and between-patches transmission. By using optimal control theory, the effectiveness of these strategies is established. Incremental cost-effectiveness ratios are calculated to determine the most cost-effective strategy. In a single patch, vaccination, insecticide spraying and the use of repellents are all highly effective in minimising transmission, but the most cost-effective is vaccination. In patches connected by host and midge movements, if any of these controls is applied in a high-risk patch, a disease-free status is achieved in both patches, but if implemented in a low-risk patch, it is not attained in any patch. If hosts and midges move, quarantine has no effect, but for no midge movement, the effect can be large in a low-risk patch if it’s internally imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Generated data is included in the manuscript with references where applicable.

References

  1. Andrus, D., Freeman, A., Eastwood, B.: Age distribution and herd life expectancy in Iowa dairy herds. J. Dairy Sci. 53(6), 764–771 (1970). https://doi.org/10.3168/jds.S0022-0302(70)86287-7

    Article  Google Scholar 

  2. Auger, P., Kouokam, E., Sallet, G., Tchuente, M., Tsanou, B.: The Ross–Macdonald model in a patchy environment. Math. Biosci. 216(2), 123–131 (2008). https://doi.org/10.1016/j.mbs.2008.08.010

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessell, P.R., Searle, K.R., Auty, H.K., Handel, I.G., Purse, B.V., Bronsvoort, BMd.C.: Assessing the potential for bluetongue virus 8 to spread and vaccination strategies in Scotland. Sci. Rep. 6(1), 1–13 (2016). https://doi.org/10.1038/srep38940

    Article  Google Scholar 

  4. Boender, G.J., Hagenaars, T.J., Elbers, A.R., Gethmann, J.M., Meroc, E., Guis, H., De Koeijer, A.A.: Confirmation of spatial patterns and temperature effects in bluetongue virus serotype-8 transmission in NW-Europe from the 2007 reported case data. Vet. Res. 45(1), 1–10 (2014). https://doi.org/10.1186/s13567-014-0075-x

    Article  Google Scholar 

  5. Charron, M.V., Seegers, H., Langlais, M., Ezanno, P.: Seasonal spread and control of bluetongue in cattle. J. Theor. Biol. 291, 1–9 (2011). https://doi.org/10.1016/j.jtbi.2011.08.041

    Article  MathSciNet  MATH  Google Scholar 

  6. Collins, O.C., Duffy, K.J.: Optimal control intervention strategies using an n-patch waterborne disease model. Nat. Resour. Model. 29(4), 499–519 (2016). https://doi.org/10.1111/nrm.12099

    Article  MathSciNet  Google Scholar 

  7. Courtejoie, N., Zanella, G., Durand, B.: Bluetongue transmission and control in Europe: a systematic review of compartmental mathematical models. Prev. Vet. Med. 156, 113–125 (2018). https://doi.org/10.1016/j.prevetmed.2018.05.012

    Article  Google Scholar 

  8. de Koeijer, A.A., Boender, G.J., Nodelijk, G., Staubach, C., Meroc, E., Elbers, A.R.: Quantitative analysis of transmission parameters for bluetongue virus serotype 8 in Western Europe in 2006. Vet. Res. 42(1), 1–9 (2011). https://doi.org/10.1186/1297-9716-42-53

    Article  Google Scholar 

  9. Ensoy, C., Aerts, M., Welby, S., Van der Stede, Y., Faes, C.: A dynamic spatio-temporal model to investigate the effect of cattle movements on the spread of bluetongue BTV-8 in Belgium. PLoS ONE 8(11), e78591 (2013). https://doi.org/10.1371/journal.pone.0078591

    Article  Google Scholar 

  10. Fitzgibbon, W.E., Morgan, J.J., Webb, G.F., Wu, Y.: Spatial models of vector-host epidemics with directed movement of vectors over long distances. Math. Biosci. 312, 77–87 (2019). https://doi.org/10.1016/j.mbs.2019.04.003

    Article  MathSciNet  MATH  Google Scholar 

  11. Græsbøll, K., Bødker, R., Enøe, C., Christiansen, L.E.: Simulating spread of bluetongue virus by flying vectors between hosts on pasture. Sci. Rep. 2(1), 1–8 (2012). https://doi.org/10.1038/srep00863

    Article  Google Scholar 

  12. Græsbøll, K., Enøe, C., Bødker, R., Christiansen, L.E.: Optimal vaccination strategies against vector-borne diseases. Spat. Spatiotemp. Epidemiol. 11, 153–162 (2014). https://doi.org/10.1016/j.sste.2014.07.005

    Article  Google Scholar 

  13. Gubbins, S., Carpenter, S., Baylis, M., Wood, J.L., Mellor, P.S.: Assessing the risk of bluetongue to UK livestock: uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number. J. R. Soc. Interface 5(20), 363–371 (2007). https://doi.org/10.1098/rsif.2007.1110

    Article  Google Scholar 

  14. Gubbins, S., Szmaragd, C., Burgin, L., Wilson, A., Volkova, V., Gloster, J., Gunn, G.J.: Assessing the consequences of an incursion of a vector-borne disease: I. Identifying feasible incursion scenarios for bluetongue in Scotland. Epidemics 2(3), 148–154 (2010). https://doi.org/10.1016/j.epidem.2010.05.001

    Article  Google Scholar 

  15. Gubbins, S., Hartemink, N., Wilson, A., Moulin, V., Noordegraaf, C.V., van der Sluijs, M., De Smit, A., Sumner, T., Klinkenberg, D.: Scaling from challenge experiments to the field: quantifying the impact of vaccination on the transmission of bluetongue virus serotype 8. Prev. Vet. Med. 105(4), 297–308 (2012). https://doi.org/10.1016/j.prevetmed.2012.02.016

    Article  Google Scholar 

  16. Hartemink, N., Purse, B., Meiswinkel, R., Brown, H.E., de Koeijer, A., Elbers, A., Boender, G.J., Rogers, D., Heesterbeek, J.: Mapping the basic reproduction number \((R_{0})\) for vector-borne diseases: a case study on bluetongue virus. Epidemics 1(3), 153–161 (2009). https://doi.org/10.1016/j.epidem.2009.05.004

    Article  Google Scholar 

  17. Hendrickx, G., Gilbert, M., Staubach, C., Elbers, A., Mintiens, K., Gerbier, G.: A wind density model to quantify the airborne spread of Culicoides species during north-western Europe bluetongue epidemic. Prev. Vet. Med. 87(1–2), 162–181 (2006). https://doi.org/10.1016/j.prevetmed.2008.06.009

    Article  Google Scholar 

  18. Maclachlan, N.J., Mayo, C.E.: Potential strategies for control of bluetongue, a globally emerging, Culicoides-transmitted viral disease of ruminant livestock and wildlife. Antiviral Res. 99(2), 79–90 (2013). https://doi.org/10.1016/j.antiviral.2013.04.021

    Article  Google Scholar 

  19. Mugabi, F., Mugisha, J., Nannyonga, B., Kasumba, H., Tusiime, M.: Parameter-dependent transmission dynamics and optimal control of foot and mouth disease in a contaminated environment. J. Egypt Math. Soc. 27(1), 1–21 (2019). https://doi.org/10.1186/s42787-019-0058-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Mugabi, F., Duffy, K.J., Mugisha, J.Y.T., Collins, O.C.: Determining the effects of transplacental and direct transmission on the probability of persistence in a bluetongue virus model in temperate and tropical regions. Results Appl. Math. 7, 100120 (2020). https://doi.org/10.1016/j.rinam.2020.100120

    Article  MathSciNet  MATH  Google Scholar 

  21. O’Farrell, H., Gourley, S.A.: Modelling the dynamics of bluetongue disease and the effect of seasonality. Bull. Math. Biol. 76(8), 1981–2009 (2014). https://doi.org/10.1007/s11538-014-9989-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Okosun, K.O., Rachid, O., Marcus, N.: Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSystems 111(2), 83–101 (2013). https://doi.org/10.1016/j.biosystems.2012.09.008

    Article  Google Scholar 

  23. Pontryagin, L.S.: Mathematical theory of optimal processes. CRC Press, Boca Raton (1987)

    Google Scholar 

  24. Qiu, Z., Kong, Q., Li, X., Martcheva, M.: The vector-host epidemic model with multiple strains in a patchy environment. J. Math. Anal. Appl. 405(1), 12–36 (2013). https://doi.org/10.1016/j.jmaa.2013.03.042

    Article  MathSciNet  MATH  Google Scholar 

  25. Saegerman, C., Berkvens, D., Mellor, P.S.: Bluetongue epidemiology in the European Union. Emerg. Infect. Dis. 14(4), 539 (2008). https://doi.org/10.3201/eid1404.071441

    Article  Google Scholar 

  26. Simpson, L., Gumel, A.B.: Mathematical assessment of the role of pre-exposure prophylaxis on HIV transmission dynamics. Appl. Math. Comput. 293, 168–193 (2017). https://doi.org/10.1016/j.amc.2016.07.043

    Article  MathSciNet  MATH  Google Scholar 

  27. Sumner, T., Burgin, L., Gloster, J., Gubbins, S.: Comparison of pre-emptive and reactive strategies to control an incursion of bluetongue virus serotype 1 to Great Britain by vaccination. Epidemiol. Infect. 141(1), 102–114 (2013). https://doi.org/10.1017/S0950268812000532

    Article  Google Scholar 

  28. Sumner, T., Orton, R.J., Green, D.M., Kao, R.R., Gubbins, S.: Quantifying the roles of host movement and vector dispersal in the transmission of vector-borne diseases of livestock. PLoS Comput. Biol. 13(4), e1005470 (2017). https://doi.org/10.1371/journal.pcbi.1005470

    Article  Google Scholar 

  29. Szmaragd, C., Wilson, A.J., Carpenter, S., Wood, J.L., Mellor, P.S., Gubbins, S.: A modeling framework to describe the transmission of bluetongue virus within and between farms in Great Britain. PLoS ONE 4(11), e7741 (2009). https://doi.org/10.1371/journal.pone.0007741

    Article  Google Scholar 

  30. Szmaragd, C., Gunn, G.J., Gubbins, S.: Assessing the consequences of an incursion of a vector-borne disease. II. Spread of bluetongue in Scotland and impact of vaccination. Epidemics 2(3), 139–147 (2010). https://doi.org/10.1016/j.epidem.2010.05.002

    Article  Google Scholar 

  31. Szmaragd, C., Wilson, A.J., Carpenter, S., Wood, J.L., Mellor, P.S., Gubbins, S.: The spread of bluetongue virus serotype 8 in Great Britain and its control by vaccination. PLoS ONE 5(2), e9353 (2010). https://doi.org/10.1371/journal.pone.0009353

    Article  Google Scholar 

  32. Turner, J., Bowers, R.G., Baylis, M.: Modelling bluetongue virus transmission between farms using animal and vector movements. Sci. Rep. 2(1), 1–7 (2012). https://doi.org/10.1038/srep00319

    Article  Google Scholar 

  33. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002). https://doi.org/10.1016/S0025-5564(02)00108-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Zorom, M., Zongo, P., Barbier, B., Some, B.: Optimal control of a spatio-temporal model for malaria: synergy treatment and prevention. J. Appl. Math. (2012). https://doi.org/10.1155/2012/854723

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is based on research supported in part by the National Research Foundation of South Africa (Grant Number 131604) and an Institute of Systems Science (DUT) Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

FM and JYTM conceptualised the project. FM analysed and drafted the content of the manuscript. KJD, JYTM and OCC supervised and assisted with the research and write up. All authors approved the final manuscript.

Corresponding author

Correspondence to Kevin J. Duffy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugabi, F., Duffy, K.J., Mugisha, J.Y.T. et al. Optimal control analysis of bluetongue virus transmission in patchy environments connected by host and wind-aided midge movements. J. Appl. Math. Comput. 68, 1949–1978 (2022). https://doi.org/10.1007/s12190-021-01596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01596-9

Keywords

Mathematics Subject Classification

Navigation