Skip to main content
Log in

Regularity and solution profiles along propagation for a cooperative species system with non-linear diffusion

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The present analysis provides insights and analytical findings for a cooperative system formulated with non-linear diffusion. This work discusses, from an analytical perspective, the interaction of two species when both cooperate to explore new territories. Firstly, the analysis focuses on regularity, existence and uniqueness of weak solutions considering slightly positivity in the non-linear operator together with a monotone argument in the independent terms. Afterwards, analytical solution profiles are provided making use of selfsimilar solutions. Non-linear diffusion induces the existence of a propagating front and determines the property of finite speed of propagation in both species when they cooperate to explore new territories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Yoon, C.: Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis system without gradient sensing. Nonlinearity 32, 1327–1351 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alford J.G.: Mathematical Models Can Predict the Spread of an Invasive species. In: Sriraman B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham.(2019)

  3. Banani, R., Sankar, K.R., Biswas, M.H.A.: Effects on prey-predator with different functional responses. Int. J. Biomath. 10, 08 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bedrossian, J., Rodríguez, N., Bertozzi, A.: Local and global wellposedness for aggregation equations and patlak-keller-segel models with degenerate diffusion. Nonlinearity 24(6), 1683 (2001)

    Article  Google Scholar 

  5. Bertozzi, A., Slepcev, D.: Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Commun. Pure Appl. Anal. 9(6), 1617 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bertsch, M., Hilhorst, D.: A density dependent diffusion equation in population dynamics: stabilization to equilibrium. SIAM J. Math. Anal. 17(4), 863–883 (1986)

    Article  MathSciNet  Google Scholar 

  7. Bhatti, M., Zeeshan, A., Ellahi, R., Anwar Bég, O., Kadir, A.: Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chin. J. Phys. (2019). https://doi.org/10.1016/j.cjph.2019.02.004

    Article  Google Scholar 

  8. Boyadzhiev, G.: Existence theorems for cooperative systems of parabolic PDEs and applications in chemistry. AIP Conference Proceedings 2159(1), 030004 (2019). https://doi.org/10.1063/1.5127469

    Article  Google Scholar 

  9. Cho, E., Kim, Y.J.: Starvation driven diffusion as a survival strategy of biological organisms Bull. Math. Biol. 75, 845–870 (2013)

    Article  MathSciNet  Google Scholar 

  10. De Pablo, A.: Doctoral Thesis. Estudio de una ecuación de reacción - difusión Universidad Autónoma de Madrid (1989)

  11. De Pablo, A., Vázquez, J.L.: Travelling waves and finite propagation in a reaction-diffusion Equation. J. Differ Equ. 93, 19–61 (1991)

    Article  MathSciNet  Google Scholar 

  12. Díaz, J.: Modeling of an aircraft fire extinguishing process with a porous medium equation. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-03891-9

    Article  Google Scholar 

  13. Díaz, J.L., Fernández, M.: Non-linear parabolic predator prey coupled system with convections. Int. J. Biomath. (2020). https://doi.org/10.1142/S1793524521500054

    Article  Google Scholar 

  14. Ellahi, R., Hussain, F., Ishtiaq, F., et al.: Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: An application to upgrade industrial sieves/filters. Pramana J. Phys. 93, 34 (2019). https://doi.org/10.1007/s12043-019-1781-8

    Article  Google Scholar 

  15. Foldes, J., Polacik, P.: On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete Cont. Dynam. Syst. 25(1), 133–157 (2009). https://doi.org/10.3934/dcds.2009.25.133

    Article  MathSciNet  MATH  Google Scholar 

  16. Haiyin, Li.: Hopf Bifurcation of delayed density-dependent Predator-Prey model. Acta Math. Sci. Series A. 39(2), 358–371 (2019)

  17. Jones, B.F.: Singular Integrals and Parabolic Equations. American Mathematical Society, United States of America (1963)

    Book  Google Scholar 

  18. Karátson, J.: A maximum principle for some nonlinear cooperative elliptic PDE systems with mixed boundary conditions. J. Math. Anal. Appl. 44(2), 900–910 (2016). https://doi.org/10.1016/j.jmaa.2016.06.062

    Article  MathSciNet  MATH  Google Scholar 

  19. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theoret. Biol. 30, 235–248 (1971)

    Article  Google Scholar 

  20. King-Yeung, L., Xueying, W., Tianran, Z.: Traveling waves for a class of diffusive disease transmission modells with network structures. SIAM J. Math Anal. 60(6), 5719–5748 (2018)

    MATH  Google Scholar 

  21. Rubenstein, D., Kealey, J.: Cooperation, Conflict, and the Evolution of Complex Animal Societies. Nat. Edu. Knowl. 3(10), 78 (2010)

    Google Scholar 

  22. Pao, C.: Nonlinear Parabolic and Elliptic Equations. Springer Science+Bussiness Media. North Carolina, United States of America (2012)

    Google Scholar 

  23. Piccoli, B., Rossi, F. and Trélat, E.: Sparse control of second-order cooperative systems and partial differential equations to approximate alignment * (2016)

  24. Shahid, A., Huang, H., Bhatti, M.M., Zhang, L., Ellahi, R.: Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface. Mathematics 8, 380 (2020). https://doi.org/10.3390/math803038

    Article  Google Scholar 

  25. Tao, Y., Winkler, M.: Effects of signal-dependent motilities in a keller-segel-type reactiondiffusion system. Math. Models Methods Appl. Sci. 27, 1645 (2017)

    Article  MathSciNet  Google Scholar 

  26. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs, Oxford (2006)

    Book  Google Scholar 

  27. Yoon, C., Kim, Y.J.: Global existence and aggregation in a keller-segel model with fokker- Planck diffusion. Acta Appl. Math. 149, 101 (2016)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Y.: Degenerate Diffusion with Advection. Doctoral Thesis. University of California (2019)

  29. Zu, L., Jiang, D., O’Regan, D.: Periodic solution for a stochastic non-autonomous Predator-Prey model with Holling II functional response. Acta Appl. Math. 161, 89–105 (2019) cta Appl. Math. 161, 89–105 (2019). https://doi.org/10.1007/s10440-018-0205-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Díaz Palencia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palencia, J.L.D. Regularity and solution profiles along propagation for a cooperative species system with non-linear diffusion. J. Appl. Math. Comput. 68, 2215–2233 (2022). https://doi.org/10.1007/s12190-021-01616-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01616-8

Keywords

Mathematics Subject Classification

Navigation