Skip to main content
Log in

Multi-inertial parallel hybrid projection algorithm for generalized split null point problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper we suggest a theoretical framework to study the generalized split null point problem (GSNPP) via a multi-step inertial based parallel hybrid projection algorithm in Hilbert spaces. The architecture and the suitable set of control conditions ensure the strong convergence of the algorithm. The possible applications of the algorithm are illustrated via various theoretical and numerical results. The key advantages of the algorithm are highlighted in comparison to the classical and non-inertial algorithm as well as (one-step and two-step) inertial variants of the algorithm for the GSNPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operators theory in Hilbert spaces. In: Dilcher, K., Taylor, K. (eds.) CMS Books in Mathematics. Springer, New York (2011)

    Google Scholar 

  2. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    Article  MathSciNet  Google Scholar 

  3. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–453 (1996)

    Article  Google Scholar 

  4. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed. New York, NY, USA: Springer, (2009)

  5. Mishra, L.N., On existence and behavior of solutions to some nonlinear integral equations with applications, Ph.D Thesis, National Institute of Technology, Silchar 788 010, Assam, India, (2017)

  6. Mishra, V.N., Some problems on approximations of functions in Banach spaces, Ph.D Thesis, Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India, (2007)

  7. Mishra, V.N., Mishra, L.N.: Trigonometric approximation of signals (Functions) in Lpnorm. Int. J. Contemp. Math. Sci. 19(7), 909–918 (2012)

    MATH  Google Scholar 

  8. Sharma, N., Mishra, L.N., Mishra, V.N., Pandey, S.: Solution of delay differential equation via \(N^v_1\) iteration algorithm. Eur. J. Pure Appl. Math. 13(5), 1110–1130 (2020)

    Article  MathSciNet  Google Scholar 

  9. Sharma, N., Mishra, L.N., Mishra, V.N., Almusawa, H.: Endpoint approximation of standard three-step multi-valued iteration algorithm for nonexpansive mappings. Appl. Math. Inf. Sci. 15(1), 73–81 (2021). https://doi.org/10.18576/amis/150109

    Article  MathSciNet  Google Scholar 

  10. Sharma, N., Mishra, L.N., Mishra, S.N., Mishra, V.N.: Empirical study of new iterative algorithm for generalized nonexpansive operators. J. Math. Comput. Sci. 25(3), 284–295 (2022)

    Article  Google Scholar 

  11. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  12. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20(1), 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  13. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications. Inverse Probl. 21, 2071–2084 (2005)

    Article  MathSciNet  Google Scholar 

  14. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  15. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65, 281–287 (2016)

    Article  MathSciNet  Google Scholar 

  16. Reich, S., Tuyen, T.M.: Iterative methods for solving the generalized split common null point problem in Hilbert spaces. Optimization 69, 1013–1038 (2019)

    Article  MathSciNet  Google Scholar 

  17. Reich, S., Tuyen, T.M.: Parallel iterative methods for solving the generalized split common null point problem in Hilbert spaces. RACSAM 114, 180 (2020)

    Article  MathSciNet  Google Scholar 

  18. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  19. Arfat, Y., Kumam, P., Ngiamsunthorn, P.S., Khan, M.A.A.: An inertial based forward-backward algorithm for monotone inclusion problems and split mixed equilibrium problems in Hilbert spaces. Adv. Differ. Equ. 2020, 453 (2020)

    Article  MathSciNet  Google Scholar 

  20. Arfat, Y., Kumam, P., Ngiamsunthorn, P.S., Khan, M.A.A., Sarwar, H., Din, H.F.: Approximation results for split equilibrium problems and fixed point problems of nonexpansive semigroup in Hilbert spaces. Adv. Differ. Equ. 2020, 512 (2020)

    Article  MathSciNet  Google Scholar 

  21. Arfat, Y., Kumam, P., Khan, M.A.A., Ngiamsunthorn, P.S., Kaewkhao, A.: An inertially constructed forward-backward splitting algorithm in Hilbert spaces. Adv. Differ. Equ. 2021, 124 (2021)

    Article  MathSciNet  Google Scholar 

  22. Arfat, Y., Kumam, P., Ngiamsunthorn, P.S., Khan, M.A.A.: An accelerated projection based parallel hybrid algorithm for fixed point and split null point problems in Hilbert spaces. Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7405

    Article  MATH  Google Scholar 

  23. Arfat, Y., Kumam, P., Khan, M.A.A., Ngiamsunthorn, P.S.: Parallel shrinking inertial extragradient approximants for pseudomonotone equilibrium, fixed point and generalized split null point problem. Ricerche Mat. (2021). https://doi.org/10.1007/s11587-021-00647-4

    Article  MATH  Google Scholar 

  24. Arfat, Y., Kumam, P., Khan, M.A.A., Ngiamsunthorn, P.S.: Shrinking approximants for fixed point problem and generalized split null point problem in Hilbert spaces. Optim. Lett. (2021). https://doi.org/10.1007/s11590-021-01810-4

    Article  MATH  Google Scholar 

  25. Mainge, P.E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)

    Article  MathSciNet  Google Scholar 

  26. Dong, Q.L., Cho, Y.J., Rassias, T.M.: General inertial Mann algorithms and their convergence analysis for nonexpansive mappings. In: Rassias, T.M. (ed.) Applications of Nonlinear Analysis, pp. 175–191. Springer, Berlin (2018)

    Chapter  Google Scholar 

  27. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)

    MATH  Google Scholar 

  28. Liang, J.W., Convergence rates of first-order operator splitting methods, In: Optimization and Control [math.OC]. Normandie University; GREYC CNRS UMR 6072, (2016)

  29. Dong, Q.L., Huang, J., Li, X.H., Cho, Y.J., Rassias, Th.M.: MiKM: Multi-step inertial Krasnosel’skiǐ-Mann algorithm and its applications. J. Glob. Optim. 73(4), 801–824 (2019)

    Article  Google Scholar 

  30. Dong, Q.L., He, S., Liu, X.: Rate of convergence of Mann, Ishikawa and Noor iterations for continuous functions on an arbitrary interval. J. Inequal. Appl. 2013, 269 (2013)

    Article  MathSciNet  Google Scholar 

  31. Dong, Q.L., He, S., Rassias, M.T.: General splitting methods with linearization for the split feasibility problem. J. Glob. Optim. 79, 813–836 (2021)

    Article  MathSciNet  Google Scholar 

  32. Goebel, K.: Iteration processes for nonexpansive mappings. In: Singh, S.P., Thomeier, S. (eds.) Topological Methods in Nonlinear Functional Analysis, Contemporary Mathematics, vol. 21, pp. 115–123. American Math. Soc, Providence (1983)

    Chapter  Google Scholar 

  33. He, S., Yang, C., Duan, P.: Realization of the hybrid method for Mann iterations. Appl. Math. Comput. 217(8), 4239–4247 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications. Springer, New York (2009)

    MATH  Google Scholar 

  35. Cui, H., Su, M.: On sufficient conditions ensuring the norm convergence of an iterative sequence to zeros of accretive operators. Appl. Math. Comput. 258, 67–71 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Tibshirani, R.: Regression shrinkage and selection via lasso. J. R. Statist. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Duchi, J., Shalev-Shwartz, S., Singer, Y. and Chandra, T.: Efficient projections onto the \(l_{1}\)-ball for learning in high dimensions, In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland (2008)

  38. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  39. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their comments and suggestions. The authors (Y. Arfat and P. Kumam) acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT. Moreover, this project is funded by National Council of Thailand (NRCT) under Research Grants for Talented Mid-Career Researchers (Contract no. N41A640089). The author Y. Arfat was supported by the Petchra Pra Jom Klao Ph.D Research Scholarship from King Mongkut’s University of Technology Thonburi, Thailand (Grant No.16/2562).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Poom Kumam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfat, Y., Kumam, P., Khan, M.A.A. et al. Multi-inertial parallel hybrid projection algorithm for generalized split null point problems. J. Appl. Math. Comput. 68, 3179–3198 (2022). https://doi.org/10.1007/s12190-021-01660-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01660-4

Keywords

Mathematics Subject Classification

Navigation