Abstract
This paper establishes a mathematical model of the Zika virus infection with the sexual transmission route under the generalized Caputo-type fractional derivative. The model consists of a system of eleven nonlinear fractional differential equations. The existence and uniqueness results are derived by applying Banach’s and Schaüder’s fixed point theorems. The different types of Ulam’s stability results for the fractional model are examined. The corrector-predictor algorithm has been applied to illustrate the approximated solutions and analyze the dynamical behavior of the fractional model under consideration. In addition, various numerical simulations are presented corresponding to different fractional-orders in \(\alpha \in [0,1]\).
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.











We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Data availibility
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469
Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Diff. Eq. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9
Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turkish J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70
Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alexandria Eng. J. 59(5), 3019–3027 (2020). https://doi.org/10.1016/j.aej.2020.04.053
Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Boundary Value Prob. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo-Fabrizio derivative. Boundary Value Prob. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9
Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos, Solitons and Fractals 134,(2020). https://doi.org/10.1016/j.chaos.2020.109705
Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of \(CD4^{+}\) T-cell with a new approach of fractional derivative. Adv. Diff. Eq. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w
Baleanu, D., Mohammadi, H., Rezapour, S.: A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative. Adv. Diff. Eq. 2020, 299 (2020). https://doi.org/10.1186/s13662-020-02762-2
Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Boundary Value Prob. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
Baleanu, D., Mohammadi, H., Rezapour, S.: A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the Rubella disease model. Adv. Diff. Eq. 2020, 184 (2020). https://doi.org/10.1186/s13662-020-02614-z
Rabaan, A.A., Bazzi, A.M., Al-Ahmed, S.H., Al-Ghaith, M.M., Al-Tawfiq, J.A.: Overview of Zika infection, epidemiology, transmission and control measures. J. Infect. Public Health 10(2), 141–149 (2017). https://doi.org/10.1016/j.jiph.2016.05.007
Kindhauser, M.K., Allen, T., Frank, V., Santhana, R.S., Dye, C.: Zika: the origin and spread of a mosquito-borne virus. Bull. World Health Organiz. 94(9), 675–686 (2016). https://doi.org/10.2471/BLT.16.171082
Lanciotti, R.S., Kosoy, O.L., Laven, J.J., Velez, J.O., Lambert, A.J., Johnson, A.J., Stanfield, S.M., Duffy, M.R.: Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14(8), 1232–1239 (2008). https://doi.org/10.3201/eid1408.080287
Musso, D., Roche, C., Robin, E., Nhan, T., Teissier, A., Cao-Lorneau, V.M.: Potential sexual transmission of zika virus. Emerg. Infect. Dis. 21(2), 359–361 (2015). https://doi.org/10.3201/eid2102.141363
Besnard, M., Lastere, S., Teissier, A., Cao-Lormeau, V., Musso, D., Cao-Lorneau, V.M.: Evidence of perinatal transmission of zika virus, French Polynesia, December 2013 and February 2014. Euro Surv. 19(13), 20751 (2014). https://doi.org/10.2807/1560-7917.ES2014.19.13.20751
Musso, D., Nhan, T., Roche, C., Bierlaire, D., Zisou, K., Shan Yan, A., Cao-Lorneau, V.M., Broult, J.: Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surv. 19(14), 20761 (2014). https://doi.org/10.2807/1560-7917.ES2014.19.14.20761
Calvet, G., Aguiar, R.S., Melo, A.S.O., Sampaio, S.A., de Filippis, I., Fabri, A., Araujo, E.S.M., de Sequeira, P.C., de Mendonça, M.C.L., ad D. A. Tschoeke, L.d., Schrago, C.G., Thompson, F.L., Brasil, P., Dos Santos, F.B., Nogueira, R.M.R., Tanuri, A., de Filippis, A.M.B.: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect. Dis. 16(6), 653–660 (2016). https://doi.org/10.1016/S1473-3099(16)00095-5
Krauer, F., Riesen, M., Reveiz, L., Oladapo, O.T., Martinez-Vega, R., Porgo, T.V., Haefliger, A., Broutet, N.J., Low, N.: Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barre syndrome: systematic review. Plos Med. 14(1), 5207634 (2017). https://doi.org/10.1371/journal.pmed.1002203
Okyere, E., Olaniyi, S., Bonyah, E.: Mathematical model for Zika virus dynamics with sexual transmission route. Sci. African 9, 00532 (2020). https://doi.org/10.1016/j.sciaf.2020.e00532
Danbaba, U., Garba, S.M.: Modeling the transmission dynamics of Zika with sterile insect technique. Math. Methods Appl. Sci. 41(18), 8871–8896 (2018). https://doi.org/10.1002/mma.5336
Bonyah, E., Khan, M.A., Okosun, K.O., Gomez-Aguitar, J.F.: On the co-infection of dengue fever and Zika virus. Optim. Control Appl. Methods 40(3), 394–421 (2019). https://doi.org/10.1002/oca.2483
Zhao, H., Wang, L., Oliva, S.M., Zhu, H.: Modeling and dynamics analysis of Zika transmission with limited medical resourses. Bull. Math. Biol. 8, 99 (2020). https://doi.org/10.1007/s11538-020-00776-1
Alkahtani, B.S.T., Alzaid, S.S.: Stochastic mathematical model of Chikungunya spread with the global derivative. Result. Phys. 20, 103680 (2021). https://doi.org/10.1016/j.rinp.2020.103680
Ali, Z., Rabiei, F., Shah, K., Khodadadi, T.: Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan. Alexandria Eng. J. 60(1), 477–489 (2021). https://doi.org/10.1016/j.aej.2020.09.020
Razzaq, O.A., Rehman, D.U., Khan, N.A., Ahmadian, A., Ferrara, M.: Optimal surveillance mitigation of COVID-19 disease outbreak: fractional order optimal control of compartment model. Result. Phys. 20,(2021). https://doi.org/10.1016/j.rinp.2020.103715
Ahmad, S., Ullah, R., Baleanu, D.: Mathematical analysis of tuberculosis control model using nonsingular kernel type Caputo derivative. Adv. Diff. Eq. 2021, 26 (2021). https://doi.org/10.1186/s13662-020-03191-x
Bonyah, E., Sagoe, A.K., Kumar, D., Deniz, S.: Fractional optimal control dynamics of coronavirus model with Mittag-Leffler law. Ecol. Complex. 45, 100880 (2021). https://doi.org/10.1016/j.ecocom.2020.100880
Ali, Z., Rabiei, F., Shah, K., Khodadadi, T.: Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model. Eur. Phys. J. Plus 136, 36 (2021). https://doi.org/10.1140/epjp/s13360-020-00994-5
Alrabaiah, H., Zeb, A., Alzahrani, E., Shah, K.: Dynamical analysis of fractional-order tobacco smoking model containing snuffing class. Alexandria Eng. J. 60(4), 3669–3678 (2021). https://doi.org/10.1016/j.aej.2021.02.005
Deressa, C.T., Duressa, G.F.: Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control. Adv. Diff. Eq. 2021, 174 (2021). https://doi.org/10.1186/s13662-021-03334-8
Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons and Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668
Ucar, E., Ozdemir, N.: A fractional model of cancer-immune system with Caputo and Caputo-Fabrizio derivatives. Eur. Phys. J. Plus 136, 43 (2021). https://doi.org/10.1140/epjp/s13360-020-00966-9
Zeb, A., Nazir, G., Shah, K., Alzahrani, E.: Theoretical and semi-analytical results to a biological model under Atangana-Baleanu-Caputo fractional derivative. Adv. Diff. Eq. 2020, 654 (2020). https://doi.org/10.1186/s13662-020-03117-7
Khan, S.A., Shah, K., Kumam, P., Seadawy, A., Zaman, G., Shah, Z.: Study of mathematical model of Hepatitis B under Caputo-Fabrizo derivative. AIMS Math.6(1), 195–209 (20201). https://doi.org/10.3934/math.2021013
Abdeljawad, T., Jarad, F., Alzabut, J.: Fractional proportional differences with memory. Eur. Phys. J. Special Topic. 226, 3333–3354 (2017). https://doi.org/10.1140/epjst/e2018-00053-5
Ahmad, M., Zada, A., Alzabut, J.: Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type. Demonst. Math. 52(1), 283–295 (2019). https://doi.org/10.1515/dema-2019-0024
Dianavinnarasi, J., Raja, R., Alzabut, J., Cao, J., Niezabitowski, M., Bagdasar, O.: Application of Caputo-Fabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: An LMI approach. Math. Comput. Simulat. (2021). https://doi.org/10.1016/j.matcom.2021.02.002
Bozkurt, F., Yousef, A., Baleanu, D., Alzabut, J.: A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host. Chaos, Solitons and Fractals 138, 109931 (2020). https://doi.org/10.1016/j.chaos.2020.109931
Seemab, A., Ur-Rehman, M., Alzabut, J., Hamdi, A.: On the existence of positive solutions for generalized fractional boundary value problems. Boundary Value Prob. 2019, 186 (2019). https://doi.org/10.1186/s13661-019-01300-8
Pratap, A., Raja, R., Alzabut, J., Dianavinnarasi, J., Cao, J., Rajchakit, G.: Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses. Neural Process. Lett. 51, 1485–1526 (2020). https://doi.org/10.1007/s11063-019-10154-1
Iswarya, M., Raja, R., Rajchakit, G., Cao, J., Alzabut, J., Huang, C.: Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on coincidence degree theory and graph theoretic method. Mathematics 7(11), 1055 (2019). https://doi.org/10.3390/math7111055
Akinyemi, L., Iyiola, O.S.: Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. Math. Methods Appl. Sci. 43(12), 7442–7464 (2020). https://doi.org/10.1002/mma.6484
Owusu-Mensah, I., Akinyemi, L., Oduro, B., Iyiola, O.S.: A fractional order approach to modeling and simulations of the novel COVID-19. Adv. Diff. Eq. 2020, 683 (2021). https://doi.org/10.1186/s13662-020-03141-7
Iyiola, O.S., Oduro, B., Akinyemi, L.: Analysis and solutions of generalized Chagas vectors re-infestation model of fractional order type. Chaos, Solitons and Fractals 145, 110797 (2021). https://doi.org/10.1016/j.chaos.2021.110797
Akinyemi, L., Senol, M., Huseen, S.N.: Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. Adv. Diff. Eq. 2021, 45 (2021). https://doi.org/10.1186/s13662-020-03208-5
Khalil, M., Arafa, A.A.M., Sayed, A.: A variable fractional order network model of Zika virus. J. Fract. Calculus Appl. 9(1), 204–221 (2018)
Khan, M.A., Ullah, S., Farhan, M.: The dynamics of Zika virus with Caputo fractional derivative. AIMS Math. 4(1), 134–146 (2019). https://doi.org/10.3934/Math.2019.1.134
Rezapour, S., Mohammadi, H., Jajarmi, A.: A new mathematical model for Zika virus transmission. Adv. Diff. Eq. 2020, 589 (2020). https://doi.org/10.1186/s13662-020-03044-7
Erturk, V.S., Kumar, P.: Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives. Chaos, Solitons and Fractals 139, 110280 (2020). https://doi.org/10.1016/j.chaos.2020.110280
Katugampola, U.N.: New approach to generalized fractional integral. Appl. Math. Comput. 218(3), 860–865 (2011). https://doi.org/10.1016/j.amc.2011.03.062
Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)
Odibat, Z., Baleanu, D.: Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 156, 94–105 (2020). https://doi.org/10.1016/j.apnum.2020.04.015
Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34(2), 149–179 (2013). https://doi.org/10.1080/01630563.2012.706673
Zhao, X.Q.: Dynamical Systems in Population Biology. Springer, Cham, Baltimore (2017). https://doi.org/10.1007/978-3-319-56433-3
Deimling, K.: Multi-valued Differential Equations. Walter de Gruyter, Berlin (1992)
Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
Rus, I.A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26(1), 103–107 (2010). https://www.jstor.org/stable/43999438
Wikipedia: List of sovereign states and dependent territories by birth rate. https://en.wikipedia.org/wiki/List\_of\_sovereign\_states\_and\_dependent\_territories\_by\_birth\_rate accessed 01.02.16 (2015)
Dumont, Y., Chiroleu, Y.F., Domerg, C.: On a temporal model for the Chikungunya disease: modeling, theory and numerics. Math. Biosci. 213(1), 80–91 (2008). https://doi.org/10.1016/j.mbs.2008.02.008
Dumont, Y., Chiroleu, Y.F.: Vector control for the Chikungunya disease. Math. Biosci. Eng. 7(2), 313–345 (2010). https://doi.org/10.3934/mbe.2010.7.313
Manore, C., Hickmann, J., Xu, J.S., Wearing, H., Hyman, J.: Comparing Dengue and Chikungunya emergence and endemic transmission in A. aegypti and A. aalbopictus. J. Theor. Biol. 356 174–191 (2014). https://doi.org/10.1016/j.jtbi.2014.04.033
Poletti, P., Messeri, G., Ajelli, M., Vallorani, R., Rizzo, C., Merler, S.: Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and Chikungunya in Central Africa. PLoS One 6(5), 18860 (2011). https://doi.org/10.1371/journal.pone.0018860
Turell, M.J., Beaman, J.R., Tammariello, R.F.: Susceptibility of selected strains of Aedes aegypti and Aedes albopictus Diptera: Culicidae to Chikungunya virus. J. Med. Entomol. 29(1), 49–53 (1992). https://doi.org/10.1093/jmedent/29.1.49
Bewick, S., Fagan, W.F., Calabrese, J., Agusto, F.: Zika virus: endemic versus epidemic dynamics and implications for disease spread in the Americas. bioRxiv, 041897 (2016). https://doi.org/10.1101/041897
World Health Organization: Microcephaly Brazil: disease outbreak news. http://www.who.int/csr/don/8-january-2016-brazil-microcephaly/en accessed 01.02.16 (2016)
Gray, R.H., Wawer, M.J., Brookmeyer, R., Sewankambo, N.K., Serwadda, D., Wabwire-Mangen, F., Lutalo, T., Li, X., vanCott, T., Quinn, T.: Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai. Uganda. The Lancet 357(9263), 1149–1153 (2001). https://doi.org/10.1016/S0140-6736(00)04331-2
Putnam, J.L., Scott, T.W.: Blood feeding behavior of Dengue-2 virus-infected Aedes aegypti. Am. J. Tropic. Med. Hygiene 52(3), 225–227 (1995). https://doi.org/10.4269/ajtmh.1995.52.225
Trpis, M., Haussermann, W.: Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am. J. Tropic. Med. Hygiene 35(6), 1263–1279 (1986). https://doi.org/10.4269/ajtmh.1986.35.1263
Newton, E.A.C., Reiter, P.: A model of the transmission of Dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on Dengue epidemics. Am. J. Tropic. Med. Hygiene 47(6), 709–720 (1992). https://doi.org/10.4269/ajtmh.1992.47.709
Paupy, C., Ollomo, B., Kamgang, B., Moutailler, S., Rousset, D., Demanou, M., Herve, J.P., Leroy, E., Simard, F.: Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and Chikungunya in Central Africa. Vector Borne Zoonotic Dis. 10(3), 259–266 (2010). https://doi.org/10.1089/vbz.2009.0005
Dubrulle, M., Mousson, L., Moutailler, S., Vazeille, M., Failloux, A.B.: Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One 4(6), 5895 (2009). https://doi.org/10.1371/journal.pone.0005895
Moulay, D., Aziz-Alaoui, M.A., Cadivel, M.: The Chikungunya disease: modeling, vector and transmission global dynamics. Math. Biosci. 229(1), 50–63 (2011). https://doi.org/10.1016/j.mbs.2010.10.008
Sebastian, M.R., Lodha, R., Kabra, S.K.: Chikungunya infection in children. Indian J. Pediatric. 76, 185 (2009). https://doi.org/10.1007/s12098-009-0049-6
Sheppard, P.M., Macdonald, W.M., Tonn, R.J., Grabs, B.: The dynamics of an adult population of Aedes aegypti in relation to Dengue haemorrhagic fever in Bangkok. J. Animal Ecol. 38(3), 661–702 (1969). https://doi.org/10.2307/3042
Trpis, M., Haussermann, W., Craig, G.B.: Estimates of population size, dispersal, and longevity of domestic Aedes aegypti by mark-release-recapture in the village of Shauri Moyo in eastern Kenya. J. Med. Entomol. 32(1), 27–33 (1995). https://doi.org/10.1093/jmedent/32.1.27
Acknowledgements
The fifth and sixth authors were supported by Azarbaijan Shahid Madani University. The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Thaiprayoon, C., Kongson, J., Sudsutad, W. et al. Analysis of a nonlinear fractional system for Zika virus dynamics with sexual transmission route under generalized Caputo-type derivative. J. Appl. Math. Comput. 68, 4273–4303 (2022). https://doi.org/10.1007/s12190-021-01663-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-021-01663-1
Keywords
- Corrector-predictor algorithm
- Fixed point
- Mathematical model
- The Generalized Caputo fractional derivative
- Ulam-Hyers stablity