Abstract
In this paper, we investigate the analytical determinants and inverses of \(n\times n\) weighted Loeplitz and weighted Foeplitz matrices. We introduce the \(n\times n\) weighted Loeplitz and weighted Foeplitz matrices and derive the analytical determinants and inverses of them by constructing the transformation matrices. Specifically, we can use the nth, \((n+1)\)st and \((n+2)\)th Fibonacci numbers to express the analytical inverse of the \(n\times n\) weighted Loeplitz matrix which is sparse. We also present the analytical determiants and inverses of the \(n\times n\) weighted Lankel and weighted Fankel matrices. Finally, we give two application examples of the main results in data and image encryption.


Similar content being viewed by others
References
Barnabei, M., Guerrini, C., Montefusco, L.B.: Some algebraic aspects of signal processing. Linear Algebra Appl. 284(1–3), 3–17 (1998)
Zeng, M.L.: A circulant-matrix-based new accelerated GSOR preconditioned method for block two-by-two linear systems from image restoration problems. Appl. Numer. Math. 164(20), 245–257 (2021)
Krueger, K., Mcclellan, J. H., Scott, W. R.: 3-D imaging for ground penetrating radar using compressive sensing with block-toeplitz structures. In: IEEE 7th Conference: Sensor Array & Multichannel Signal Processing Workshop, 229–232 (2012)
Sathik, M.M., Sujatha, S.S.: Application of Toeplitz matrix in watermarking for image authentication. In: 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), 55–59. https://doi.org/10.1109/ICCCET.2011.5762438. (2011)
Costarelli, D., Seracini, M., Vinti, G.: A comparison between the sampling Kantorovich algorithm for digital image processing with some interpolation and quasi-interpolation methods. Appl. Math. Comput. 374, 125046 (2020)
Wu, Y., Fang, Y., Fan, Z., Wang, C., Liu, C.: An automated vertical drift correction algorithm for AFM images based on morphology prediction. Micron 140, 102950 (2021)
Saeed, K.: Carathéodory-Toeplitz based mathematical methods and their algorithmic applications in biometric image processing. Appl. Numer. Math. 75, 2–21 (2014)
Liao, L.D., Zhang, G.F.: New variant of the HSS iteration method for weighted Toeplitz regularized least-squares problems from image restoration. Comput. Math. Appl. 73(11), 2482–2499 (2017)
Marivani, I., Tsiligianni, E., Cornelis, B., Deligiannis, N.: Multimodal deep unfolding for guided image super-resolution. IEEE Trans. Image Process. 29, 8443–8456 (2020)
Liu, J., Ni, A., Ni, G.: A nonconvex \(l_1(l_1-l_2)\) model for image restoration with impulse noise. J. Comput. Appl. Math. 378, 112934 (2020)
Liu, Y., Wang, A., Zhou, H., Jia, P.: Single nighttime image dehazing based on image decomposition. Signal Process. 183(5), 107986 (2021)
Wu, Y.H., Song, W.R., Zheng, J.Y., Liu, F.: Non-uniform low-light image enhancement via non-local similarity decomposition model. Signal Process. Image Commun. 93(2), 116141 (2021)
Shang, X.L., Li, J., Stoica, P.: Weighted SPICE algorithms for range-doppler imaging using one-bit automotive radar. IEEE J. Sel. Top. Signal Process. 15(4), 1041–1054 (2021)
Jiang, Z.L., Gong, Y.P., Gao, Y.: Invertibility and explicit inverses of circulant-type matrices with \(k\)-Fibonacci and \(k\)-Lucas number. Abstr. Appl. Anal. 2014, 238953 (2014)
Zheng, Y.P., Shon, S.: Exact determinants and inverses of generalized Lucas skew circulant type matrices. Appl. Math. Comput. 270, 105–113 (2015)
Bozkurt, D., Tam, T.Y.: Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers. Appl. Math. Comput. 219, 544–551 (2012)
Jiang, X.Y., Hong, K.C.: Explicit inverse matrices of Tribonacci skew circulant type matrices. Appl. Math. Comput. 268, 93–102 (2015)
Zuo, B.S., Jiang, Z.L., Fu, D.Q.: Determinants and inverses of Ppoeplitz and Ppankel matrices. Spec. Matrices 6, 201–215 (2018)
Jiang, Z.L., Wang, W.P., Zheng, Y.P., Zuo, B.S., Niu, B.: Interesting explicit expression of determinants and inverse matrices for Foeplitz and Loeplitz matrices. Mathematics 7(10), 939 (2019)
Jiang, Z.L., Sun, J.X.: Determinant and inverse of a Gaussion Fibonacci skew-Hermitian Toeplitz matrix. J. Nonlinear Sci. Appl. 10, 3694–3707 (2017)
Wei, Y.L., Zheng, Y.P., Jiang, Z.L., Shon, S.: The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows. J. Appl. Math. Comput. (2021). https://doi.org/10.1007/s12190-021-01532-x
Wei, Y.L., Jiang, X.Y., Jiang, Z.L., Shon, S.: On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners. J. Appl. Anal. Comput. 10(1), 178–191 (2020)
Fu, Y.R., Jiang, X.Y., Jiang, Z.L., Jhang, S.: Properties of a class of perturbed Toeplitz periodic tridiagonal matrices. Comput. Appl. Math. 39, 1–19 (2020)
Fu, Y.R., Jiang, X.Y., Jiang, Z.L., Jhang, S.: Inverses and eigenpairs of periodic tridiagonal Toeplitz matrix with opposite-bordered rows. J. Appl. Anal. Comput. 10(4), 1599–1613 (2020)
Akbulak, M., Bozkurt, D.: On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers. Hacet. J. Math. Stat. 37(2), 89–95 (2008)
Thomas, K.: Fibonacci and Lucas Numbers with Applications. Wiley, Hoboken (2001)
Zhang, F.Z.: The Schur Complement and Its Applications. Springer, Berlin (2006)
Liu, L., Jiang, Z.L.: Explicit form of the inverse matrices of Tribonacci circulant type matrices. Abstr. Appl. Anal. 2015, 169726 (2015)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The research was supported by the National Natural Science Foundation of China (No. 12001257 ), the Natural Science Foundation of Shandong Province ( No.ZR2020QA035) and the PhD Research Foundation of Linyi University ( No. LYDX2018BS067)
Rights and permissions
About this article
Cite this article
Meng, Q., Zheng, Y. & Jiang, Z. Determinants and inverses of weighted Loeplitz and weighted Foeplitz matrices and their applications in data encryption. J. Appl. Math. Comput. 68, 3999–4015 (2022). https://doi.org/10.1007/s12190-022-01700-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-022-01700-7
Keywords
- Weighted Loeplitz matrix
- Weighted Foeplitz matrix
- Lucas numbers
- Fibonacci numbers
- Determinant
- Inverse
- Data and image encryption