Skip to main content

Advertisement

Log in

Convergence analysis for the King-Werner method under \(\gamma -\)conditions

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study a semilocal convergence result for the King-Werner iterative method in Banach space setting under a gamma-type condition. The convergence of the method is established under weaker conditions than those used in previous works; we only use hypotheses up to the second Fréchet derivative of the involved operator. In addition, we illustrate the applicability of our result with some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kantorovich, L.V.: On Newton’ s method for functional equations. In Doklady Akademii Nauk SSSR 59, 1237–1240 (1948)

    MathSciNet  MATH  Google Scholar 

  2. Amat, S., Busquier, S., Gutiérrez, J.M.: Third-order iterative methods with applications to Hammerstein equations: A unified approach. J. Comput. Appl. Math. 235(9), 2936–2943 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyros, I.K.: Chebysheff-Halley-like methods in Banach spaces. Korean J. Comput. Appl. Math. 4(1), 83 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, D., Argyros, I.K.: The midpoint method for solving nonlinear operator equations in Banach space. Appl. Math. Lett. 5(4), 7–9 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ostrowski, A.M.: Solution of Equations in Euclidean and Banach Spaces. Academic Press, Pure and applied mathematics (1973)

  6. Traub, J.F.: Iterative Methods for the Solution of Equations, vol. 312. American Mathematical Society, Providence (1982)

    MATH  Google Scholar 

  7. Argyros, I.K.: Computational Theory of Iterative Methods, vol. 15. Elsevier Science, San Diego, CA, USA (2007)

    MATH  Google Scholar 

  8. Ezquerro, J.A., Hernández, M.A.: The Classic Theory of Kantorovich, pp. 1–38. Springer International Publishing, Cham (2017)

    Google Scholar 

  9. Werner, W.: Über ein verfahren der ordnung \(1 + \sqrt{2} \) zur nullstellenbestimmung. Numer. Math. 32(3), 333–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Werner, W.: Some supplementary results on the 1+ \(\sqrt{2} \) order method for the solution of nonlinear equations. Numer. Math. 38(3), 383–392 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. King, R.F.: Tangent methods for nonlinear equations. Numer. Math. 18(4), 298–304 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1966)

    MATH  Google Scholar 

  13. Argyros, I.K., Ren, H.: On the convergence of efficient King-Werner-type methods of order \(1+\sqrt{2}\). J. Comput. Appl. Math. 285, 169–180 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cárdenas, E., Castro, R., Sierra, W.: A Newton-type midpoint method with high efficiency index. J. Math. Anal. Appl. 491(2), 124381 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, D.F., Wang, X.H.: Convergence on a deformed Newton method. Appl. Math. Comput. 94(1), 65–72 (1998)

    MathSciNet  MATH  Google Scholar 

  16. McDougall, T.J., Wotherspoon, S.J.: A simple modification of Newton’s method to achieve convergence of order 1+\(\sqrt{2}\). Appl. Math. Lett. 29, 20–25 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ren, H.: On the local convergence of a deformed Newton’s method under Argyros-type condition. J. Math. Anal. Appl. 321(1), 396–404 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, X.H., Han, D.F., Sun, F.Y.: Point estimates on deformed Newton’s iteration. Math. Numer. Sinica 12, 145–156 (1990)

    MATH  Google Scholar 

  19. Wang, X.H., Shiming, Z.: On the convergence of King-Werner’s iteration procedure for solving nonliear equations. Math. Numer. Sinica 4, 70–79 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Zhao, Y., Wu, Q.: Convergence analysis for a deformed Newton’s method with third-order in Banach space under \(\gamma \)-condition. Int. J. Comput. Math. 86(3), 441–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first and the third author wish to thank the Universidad del Cauca for supporting this work through research project VRI ID 5464.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, E., Castro, R. & Sierra, W. Convergence analysis for the King-Werner method under \(\gamma -\)conditions. J. Appl. Math. Comput. 68, 4605–4620 (2022). https://doi.org/10.1007/s12190-022-01720-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01720-3

Keywords

Mathematics Subject Classification