Skip to main content
Log in

Optimal error analysis of the Alikhanov formula for a time-fractional Schrödinger equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we have developed a fully discrete Alikhanov finite element method to solve the time-fractional Schrödinger equation with non-smooth solution. The proposed scheme uses the Alikhanov formula on graded meshes to approximate the Caputo fractional derivative in temporal direction and the standard finite element method in spatial direction. Furthermore, the \(L^2(\Omega )\)-norm stability and the optimal convergent result for the computed solution are derived. Finally, a numerical example is presented to verify the accuracy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Not applicable.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MATH  Google Scholar 

  2. An, N., Huang, C., Xijun, Yu.: Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete Continu. Dyn. Syst. Ser. B 25(1), 321–334 (2020)

    MATH  Google Scholar 

  3. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79(1), 624–647 (2019)

    Article  MATH  Google Scholar 

  4. Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact adi schemes for nonlinear time-fractional schrödinger equations. Appl. Math. Lett. 84, 160–167 (2018)

    Article  MATH  Google Scholar 

  5. Cheng, M.: Bound state for the fractional schrödinger equation with unbounded potential. J. Math. Phys. 53(4), 043507 (2012)

    Article  MATH  Google Scholar 

  6. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear schrödinger equation with the fractional laplacian. Proc. R. Soc. Edinb. Sect. A Math. 142(6), 1237–1262 (2012)

  7. Huang, C., An, N., Chen, H.: Local \(H^1\)-norm error analysis of a mixed finite element method for a time-fractional biharmonic equation. Appl. Numer. Math. 173, 211–221 (2022)

    Article  MATH  Google Scholar 

  8. Huang, C., An, N., Xijun, Yu.: A local discontinuous Galerkin method for time-fractional diffusion equation with discontinuous coefficient. Appl. Numer. Math. 151, 367–379 (2020)

    Article  MATH  Google Scholar 

  9. Huang, C., Chen, H., An, N.: \(\beta \)-robust superconvergent analysis of a finite element method for the distributed order time-fractional diffusion equation. J. Sci. Comput. 90(1), 44 (2022)

    Article  MATH  Google Scholar 

  10. Huang, C., Stynes, M.: A sharp \(\alpha \)-robust \({L}^\infty ({H}^1)\) error bound for a time-fractional Allen-Cahn problem discretised by the Alikhanov \({L}2-1_{\sigma }\) scheme and a standard FEM. J. Sci. Comput. 91(2), 43 (2022)

    Article  MATH  Google Scholar 

  11. Iomin, A.: Fractional-time Schrödinger equation: fractional dynamics on a comb. Chaos, Solitons Fractals 44(4–5), 348–352 (2011)

    Article  MATH  Google Scholar 

  12. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)

    Article  MATH  Google Scholar 

  13. Kopteva, N.: Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem. Math. Comput. 90(327), 19–40 (2021)

    Article  MATH  Google Scholar 

  14. Laskin, N.: Fractional quantum mechanics and lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)

    Article  MATH  Google Scholar 

  15. Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theory Methods Appl. 14(2), 355–376 (2021)

    Article  MATH  Google Scholar 

  16. Li, M., Wei, Y., Niu, B., Zhao, Y.-L.: Fast L2–1\(_{\sigma }\) Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives. Appl. Math. Comput. 416, 126734 (2022)

    MATH  Google Scholar 

  17. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MATH  Google Scholar 

  18. Liao, H., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MATH  Google Scholar 

  19. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MATH  Google Scholar 

  20. Thomée, V.: Galerkin finite element methods for parabolic problems. 2nd revised and expanded ed. Berlin: Springer, 2nd revised and expanded ed. edition (2006)

  21. Wang, S., Mingyu, X.: Generalized fractional schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 043502 (2007)

    Article  MATH  Google Scholar 

  22. Wang, Y., Wang, G., Linlin, B., Mei, L.: Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer. Algorithms 88(1), 419–451 (2021)

    Article  MATH  Google Scholar 

  23. Zaky, M.A., Hendy, A.S.: Convergence analysis of an L1-continuous galerkin method for nonlinear time-space fractional schrödinger equations. Int. J. Comput. Math. 98(7), 1420–1437 (2021)

    Article  MATH  Google Scholar 

  24. Jun Zhang, H., Chen, T.S., Wang, J.: Error analysis of a fully discrete scheme for time fractional Schrödinger equation with initial singularity. Int. J. Comput. Math. 97(8), 1636–1647 (2020)

    Article  MATH  Google Scholar 

  25. Zhang, J., Wang, J.R., Zhou, Y.: Numerical analysis for time-fractional schrödinger equation on two space dimensions. Adv. Differ. Equ. 2020(1), 1–16 (2020)

    Article  Google Scholar 

  26. Zheng, M., Liu, F., Jin, Z.: The global analysis on the spectral collocation method for time fractional schrödinger equation. Appl. Math. Comput. 365, 124689 (2020)

    MATH  Google Scholar 

  27. Zhou, B., Chen, X., Li, D.: Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J. Sci. Comput. 85(2), 39 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research of Chaobao Huang is supported in part by the National Natural Science Foundation of China under Grant 12101360 and the Natural Science Foundation of Shandong Province under Grant ZR2020QA031. The research of Na An is supported by the National Natural Science Foundation of China under Grant 11801332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na An.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., An, N. & Huang, C. Optimal error analysis of the Alikhanov formula for a time-fractional Schrödinger equation. J. Appl. Math. Comput. 69, 159–170 (2023). https://doi.org/10.1007/s12190-022-01733-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01733-y

Keywords

Mathematics Subject Classification

Navigation