Skip to main content
Log in

Analysis of a stochastic hybrid population model with impulsive perturbations and Allee effect

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A stochastic hybrid population model with Allee effect, Markovian switching and impulsive perturbations is proposed and studied. Sufficient conditions for the extinction and permanence are obtained. Some asymptotic properties are investigated. The lower- and the upper-growth rates of the positive solutions are derived. Numerical simulations are performed to illustrate the main results and to analyze the effects of the Allee effect, the Markovian switching and the impulsive perturbations on the survival and extinction of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Freedman, A.: Stochastic Differential Equations and their Applications. Academic Press, San Diego (1976)

    Google Scholar 

  2. Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker (1989)

  3. Jiang, D., Shi, N., Li, X.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. J. Math. Anal. Appl. 340, 588–597 (2008)

    Article  MATH  Google Scholar 

  4. Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems. J. Math. Anal. Appl. 375, 443–457 (2011)

    Article  MATH  Google Scholar 

  5. Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11–28 (2011)

    Article  MATH  Google Scholar 

  6. Li, X., Yin, G.: Logistic models with regime switching: permanence and ergodicity. J. Math. Anal. Appl. 441, 593–611 (2016)

    Article  MATH  Google Scholar 

  7. Dennis, B.: Allee effects: population growth, critical density, and the chance of extinction. Nat. Resour. Model 3, 481–538 (1989)

    Article  MATH  Google Scholar 

  8. Liebhold, A., Bascompte, J.: The Allee effect, stochastic dynamics and the eradication of alien species. Ecol. Lett. 6, 133–40 (2003)

    Article  Google Scholar 

  9. Xiao, D., Ruan, S.: Bifurcations in a predator-prey system with group defense. Int. J. Bifurcat. Chaos 11, 2123–2131 (2001)

    Article  MATH  Google Scholar 

  10. Franck, C., Tim, C., Bryan, G.: Inverse density dependence and the Allee effect. Trends in Ecology and Evolution 14(10), 405–410 (1999)

    Article  Google Scholar 

  11. Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak allee effect. J. Math. Biol. 52, 807–829 (2006)

    Article  MATH  Google Scholar 

  12. Yu, X., Yuan, S., Zhang, T.: Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching. Commun. Nonlinear Sci. Numer. Simulat. 59, 359–374 (2018)

    Article  MATH  Google Scholar 

  13. Ji, W.: Permanence and extinction of a stochastic hybrid population model with Allee effect. Physica A 533, 122075 (2019)

    Article  MATH  Google Scholar 

  14. Liu, M., Deng, M.: Analysis of a stochastic hybrid population model with Allee effect. Appl. Math. Comput. 364, 124582 (2020)

    MATH  Google Scholar 

  15. Liu, M., Wang, K.: On a stochastic logistic equation with impulsive perturbations. Comput. Math. Appl. 63, 871–886 (2012)

    Article  MATH  Google Scholar 

  16. Wu, R.: Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations. J. Nonlinear Sci. Appl. 10, 436–450 (2017)

    Article  MATH  Google Scholar 

  17. Deng, Y., Liu, M.: Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations. Applied Mathematical Modelling 78, 482–504 (2020)

    Article  MATH  Google Scholar 

  18. Liu, B., Liu, X., Liao, X.: Existence and uniqueness and stability of solutions for stochastic impulsive systems. Jrl Syst Sci & Complexity 20, 149–158 (2007)

    Article  MATH  Google Scholar 

  19. Liu, Z., Zhong, S., Teng, Z.: N Species impulsive migration model with Markovian switching. J. Theor. Biol. 307, 62–69 (2012)

    Article  MATH  Google Scholar 

  20. Zhang, S., Meng, X., Feng, T., Zhang, T.: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects. Nonlinear Anal.: Hybrid Systems 26, 19–37 (2017)

    MATH  Google Scholar 

  21. Liu, M., Du, C., Deng, M.: Persistence and extinction of a modified Leslie-Gower Holling-type II stochastic predator-prey model with impulsive toxicant input in polluted environments. Nonlinear Anal.: Hybrid Systems 27, 177–190 (2018)

    Article  MATH  Google Scholar 

  22. Yang, J., Tan, Y., Cheke, R.: Modelling effects of a chemotherapeutic dose response on a stochastic tumour-immune model. Chaos, Solitons and Fractals 123, 1–13 (2019)

    Article  MATH  Google Scholar 

  23. Anderson, W.J.: Continuous-time Markov Chains, An application-oriented approach, Springer Series in Statistics: Probability and its Applications, Springer-Berlag, New York (1991)

  24. Liu, M., Deng, M.: Permanence and extinction of a stochastic hybrid model for tumor growth. Appl. Math. Lett. 94, 66–72 (2019)

    Article  MATH  Google Scholar 

  25. Khasminskii, R.Z., Zhu, C., Yin, G.: Stability of regime-switching diffusions. Stochastic Process. Appl. 117, 1037–1051 (2007)

    Article  MATH  Google Scholar 

  26. Luo, Q., Mao, X.: Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 334, 69–84 (2007)

    Article  MATH  Google Scholar 

  27. Liu, M., Wang, K.: Dynamics and simulations of a logistic model with impulsive perturbations in a random environment. Math. Comput. Simulat. 93, 53–75 (2013)

    Article  MATH  Google Scholar 

  28. Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  MATH  Google Scholar 

  29. Settati, A., Lahrouz, A.: On stochastic Gilpin-Ayala population model with Markovian switching. BioSystems 130, 17–27 (2015)

    Article  MATH  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Chongqing (cstc2019jcyj-msxm2151), Chongqing Municipal Education Commission (KJQN201900707), Joint Training Base Construction Project for Graduate Students in Chongqing (JDLHPYJD2021016), Group Building Scientific Innovation Project for universities in Chongqing (CXQT21021) and the Graduate Research and Innovation Project of Chongqing (CYS21370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Zijian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qianjun, C., Zijian, L., Yuanshun, T. et al. Analysis of a stochastic hybrid population model with impulsive perturbations and Allee effect. J. Appl. Math. Comput. 69, 565–587 (2023). https://doi.org/10.1007/s12190-022-01752-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01752-9

Keywords

Mathematics Subject Classification

Navigation