Skip to main content

Advertisement

Log in

Pointwise-in-time error estimate of an ADI scheme for two-dimensional multi-term subdiffusion equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We use alternating direction implicit (ADI) difference method to solve a two-dimensional multi-term time-fractional subdiffusion equation with Dirichlet boundary conditions whose solution has a typical weak singularity at the initial time. L1 scheme on uniform mesh is used to discretize the multi-term temporal Caputo fractional derivatives with orders \(\alpha _l \in (0,1)\) for \(l=1,2,\dots J\). The sharp pointwise-in-time error estimate is given for the fully discrete ADI scheme, and the final error bound is \(\alpha _1\)-robust (i.e. the error bound does not blow up when \(\alpha _1\rightarrow 1^-\)), where \(\alpha _1\) is the highest fractional derivative order in the multi-term time fractional derivatives. Through theoretical analysis and numerical experiments, we prove that the convergence order of the fully discrete ADI scheme is \(O(\tau ^{2\alpha _{1}}+\tau t_{n}^{\alpha _{1}-1}+h_1^2+h_2^2)\) at time \(t=t_n\); therefore, the temporal accuracy of the scheme can attain \(O(\tau ^{\min \{2\alpha _{1},1\}})\) when t is away from 0, while globally it is \(O(\tau ^{\alpha _{1}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data included in this study are available upon reasonable request.

References

  1. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002). https://doi.org/10.1006/jmaa.2000.7194

    Article  MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204, p. 523. Elsevier Science B.V., Amsterdam, North-Holland Mathematics Studies (2006)

    Book  MATH  Google Scholar 

  3. Rahimy, M.: Applications of fractional differential equations. Appl. Math. Sci. (Ruse) 4(49–52), 2453–2461 (2010). https://doi.org/10.1049/iet-cta.2009.0322

    Article  MATH  Google Scholar 

  4. Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015). https://doi.org/10.1016/j.cam.2015.04.049

    Article  MATH  Google Scholar 

  5. Huang, J., Zhang, J., Arshad, S., Tang, Y.: A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. Appl. Numer. Math. 159, 159–173 (2021). https://doi.org/10.1016/j.apnum.2020.09.003

    Article  MATH  Google Scholar 

  6. Zhou, J., Xu, D.: Alternating direction implicit difference scheme for the multi-term time-fractional integro-differential equation with a weakly singular kernel. Comput. Math. Appl. 79(2), 244–255 (2020). https://doi.org/10.1016/j.camwa.2019.06.027

    Article  MATH  Google Scholar 

  7. Sun, H., Sun, Z.-Z.: A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation. Numer. Algorithms 86(2), 761–797 (2021). https://doi.org/10.1007/s11075-020-00910-z

    Article  MATH  Google Scholar 

  8. Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020). https://doi.org/10.1016/j.apnum.2020.01.003

    Article  MATH  Google Scholar 

  9. Zheng, R., Liu, F., Jiang, X.: A Legendre spectral method on graded meshes for the two-dimensional multi-term time-fractional diffusion equation with non-smooth solutions. Appl. Math. Lett. 104, 106247–8 (2020). https://doi.org/10.1016/j.aml.2020.106247

    Article  MATH  Google Scholar 

  10. Zaky, M.A.: A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comput. Appl. Math. 37(3), 3525–3538 (2018). https://doi.org/10.1007/s40314-017-0530-1

    Article  MATH  Google Scholar 

  11. Sun, H., Zhao, X., Sun, Z.-Z.: The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J. Sci. Comput. 78(1), 467–498 (2019). https://doi.org/10.1007/s10915-018-0820-9

    Article  MATH  Google Scholar 

  12. She, M., Li, D., Sun, H.-w: A transformed \(L1\) method for solving the multi-term time-fractional diffusion problem. Math. Comput. Simulation 193, 584–606 (2022). https://doi.org/10.1016/j.matcom.2021.11.005

    Article  MATH  Google Scholar 

  13. Stynes, M.: Singularities. In: Handbook of Fractional Calculus with Applications. Vol. 3, pp. 287–305. De Gruyter, Berlin (2019)

  14. Wang, Z., Liang, Y., Mo, Y.: A novel high order compact ADI scheme for two dimensional fractional integro-differential equations. Appl. Numer. Math. 167, 257–272 (2021). https://doi.org/10.1016/j.apnum.2021.05.008

    Article  MATH  Google Scholar 

  15. Li, D., She, M., Sun, H.-W., Yan, X.: A novel discrete fractional Grönwall-type inequality and its application in pointwise-in-time error estimates. J. Sci. Comput. 91(1), 27–26 (2022). https://doi.org/10.1007/s10915-022-01803-0

    Article  MATH  Google Scholar 

  16. Wang, Y., Chen, H.: Pointwise error estimate of an alternating direction implicit difference scheme for two-dimensional time-fractional diffusion equation. Comput. Math. Appl. 99, 155–161 (2021). https://doi.org/10.1016/j.camwa.2021.08.012

    Article  MATH  Google Scholar 

  17. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017). https://doi.org/10.1137/16M1082329

    Article  MATH  Google Scholar 

  18. Chen, H., Stynes, M.: Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 41(2), 974–997 (2021). https://doi.org/10.1093/imanum/draa015

    Article  MATH  Google Scholar 

  19. Meng, X., Stynes, M.: Barrier function local and global analysis of an L1 finite element method for a multiterm time-fractional initial-boundary value problem. J. Sci. Comput. 84(1), 5–16 (2020). https://doi.org/10.1007/s10915-020-01250-9

    Article  MATH  Google Scholar 

  20. Chen, H., Stynes, M.: Using complete monotonicity to deduce local error estimates for discretisations of a multi-term time-fractional diffusion equation. Comput. Methods Appl. Math. 22(1), 15–29 (2022). https://doi.org/10.1515/cmam-2021-0053

    Article  MATH  Google Scholar 

  21. Zhang, Y.-N., Sun, Z..-z: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230(24), 8713–8728 (2011). https://doi.org/10.1016/j.jcp.2011.08.020

    Article  MATH  Google Scholar 

  22. Huang, C., Stynes, M., Chen, H.: An \(\alpha \)-robust finite element method for a multi-term time-fractional diffusion problem. J. Comput. Appl. Math. 389, 113334–8 (2021). https://doi.org/10.1016/j.cam.2020.113334

    Article  MATH  Google Scholar 

  23. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers, Applied Mathematics (Boca Raton), vol. 16, p. 254. Chapman & Hall/CRC, Boca Raton, FL (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research is supported in part by the National Natural Science Foundation of China under Grant 11801026, and Fundamental Research Funds for the Central Universities (No. 202264006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Chen, H. Pointwise-in-time error estimate of an ADI scheme for two-dimensional multi-term subdiffusion equation. J. Appl. Math. Comput. 69, 707–729 (2023). https://doi.org/10.1007/s12190-022-01759-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01759-2

Keywords

Mathematics Subject Classification