Abstract
We use alternating direction implicit (ADI) difference method to solve a two-dimensional multi-term time-fractional subdiffusion equation with Dirichlet boundary conditions whose solution has a typical weak singularity at the initial time. L1 scheme on uniform mesh is used to discretize the multi-term temporal Caputo fractional derivatives with orders \(\alpha _l \in (0,1)\) for \(l=1,2,\dots J\). The sharp pointwise-in-time error estimate is given for the fully discrete ADI scheme, and the final error bound is \(\alpha _1\)-robust (i.e. the error bound does not blow up when \(\alpha _1\rightarrow 1^-\)), where \(\alpha _1\) is the highest fractional derivative order in the multi-term time fractional derivatives. Through theoretical analysis and numerical experiments, we prove that the convergence order of the fully discrete ADI scheme is \(O(\tau ^{2\alpha _{1}}+\tau t_{n}^{\alpha _{1}-1}+h_1^2+h_2^2)\) at time \(t=t_n\); therefore, the temporal accuracy of the scheme can attain \(O(\tau ^{\min \{2\alpha _{1},1\}})\) when t is away from 0, while globally it is \(O(\tau ^{\alpha _{1}})\).
Similar content being viewed by others
Data Availability
All data included in this study are available upon reasonable request.
References
Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002). https://doi.org/10.1006/jmaa.2000.7194
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204, p. 523. Elsevier Science B.V., Amsterdam, North-Holland Mathematics Studies (2006)
Rahimy, M.: Applications of fractional differential equations. Appl. Math. Sci. (Ruse) 4(49–52), 2453–2461 (2010). https://doi.org/10.1049/iet-cta.2009.0322
Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015). https://doi.org/10.1016/j.cam.2015.04.049
Huang, J., Zhang, J., Arshad, S., Tang, Y.: A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. Appl. Numer. Math. 159, 159–173 (2021). https://doi.org/10.1016/j.apnum.2020.09.003
Zhou, J., Xu, D.: Alternating direction implicit difference scheme for the multi-term time-fractional integro-differential equation with a weakly singular kernel. Comput. Math. Appl. 79(2), 244–255 (2020). https://doi.org/10.1016/j.camwa.2019.06.027
Sun, H., Sun, Z.-Z.: A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation. Numer. Algorithms 86(2), 761–797 (2021). https://doi.org/10.1007/s11075-020-00910-z
Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020). https://doi.org/10.1016/j.apnum.2020.01.003
Zheng, R., Liu, F., Jiang, X.: A Legendre spectral method on graded meshes for the two-dimensional multi-term time-fractional diffusion equation with non-smooth solutions. Appl. Math. Lett. 104, 106247–8 (2020). https://doi.org/10.1016/j.aml.2020.106247
Zaky, M.A.: A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comput. Appl. Math. 37(3), 3525–3538 (2018). https://doi.org/10.1007/s40314-017-0530-1
Sun, H., Zhao, X., Sun, Z.-Z.: The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J. Sci. Comput. 78(1), 467–498 (2019). https://doi.org/10.1007/s10915-018-0820-9
She, M., Li, D., Sun, H.-w: A transformed \(L1\) method for solving the multi-term time-fractional diffusion problem. Math. Comput. Simulation 193, 584–606 (2022). https://doi.org/10.1016/j.matcom.2021.11.005
Stynes, M.: Singularities. In: Handbook of Fractional Calculus with Applications. Vol. 3, pp. 287–305. De Gruyter, Berlin (2019)
Wang, Z., Liang, Y., Mo, Y.: A novel high order compact ADI scheme for two dimensional fractional integro-differential equations. Appl. Numer. Math. 167, 257–272 (2021). https://doi.org/10.1016/j.apnum.2021.05.008
Li, D., She, M., Sun, H.-W., Yan, X.: A novel discrete fractional Grönwall-type inequality and its application in pointwise-in-time error estimates. J. Sci. Comput. 91(1), 27–26 (2022). https://doi.org/10.1007/s10915-022-01803-0
Wang, Y., Chen, H.: Pointwise error estimate of an alternating direction implicit difference scheme for two-dimensional time-fractional diffusion equation. Comput. Math. Appl. 99, 155–161 (2021). https://doi.org/10.1016/j.camwa.2021.08.012
Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017). https://doi.org/10.1137/16M1082329
Chen, H., Stynes, M.: Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 41(2), 974–997 (2021). https://doi.org/10.1093/imanum/draa015
Meng, X., Stynes, M.: Barrier function local and global analysis of an L1 finite element method for a multiterm time-fractional initial-boundary value problem. J. Sci. Comput. 84(1), 5–16 (2020). https://doi.org/10.1007/s10915-020-01250-9
Chen, H., Stynes, M.: Using complete monotonicity to deduce local error estimates for discretisations of a multi-term time-fractional diffusion equation. Comput. Methods Appl. Math. 22(1), 15–29 (2022). https://doi.org/10.1515/cmam-2021-0053
Zhang, Y.-N., Sun, Z..-z: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230(24), 8713–8728 (2011). https://doi.org/10.1016/j.jcp.2011.08.020
Huang, C., Stynes, M., Chen, H.: An \(\alpha \)-robust finite element method for a multi-term time-fractional diffusion problem. J. Comput. Appl. Math. 389, 113334–8 (2021). https://doi.org/10.1016/j.cam.2020.113334
Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers, Applied Mathematics (Boca Raton), vol. 16, p. 254. Chapman & Hall/CRC, Boca Raton, FL (2000)
Acknowledgements
The research is supported in part by the National Natural Science Foundation of China under Grant 11801026, and Fundamental Research Funds for the Central Universities (No. 202264006).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cao, D., Chen, H. Pointwise-in-time error estimate of an ADI scheme for two-dimensional multi-term subdiffusion equation. J. Appl. Math. Comput. 69, 707–729 (2023). https://doi.org/10.1007/s12190-022-01759-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-022-01759-2