Skip to main content
Log in

An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper addresses the numerical solution of the three-dimensional nonlocal evolution equation with a weakly singular kernel. The first order fractional convolution quadrature scheme and backward Euler (BE) alternating direction implicit (ADI) method, are proposed to approximate and discretize the Riemann-Liouville (R-L) fractional integral term and temporal derivative, respectively. In order to obtain a fully discrete method, the standard central finite difference approximation is used to discretize the second-order spatial derivative. By using ADI scheme for the three-dimensional problem, the overall computational cost is reduced significantly. Two new approaches are adopted for theoretical stability analysis. The convergence behaviour of the proposed method is provided and the error bounds are proved. In addition, two test problems illustrate the validity and effectiveness of the methods. The CPU time of our scheme is extremely little.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tabata, M., Eshima, N., Takagi, I.: The nonlinear integro-partial differential equation describing the logistic growth of human population with migration. Appl. Math. Comput. 98(2–3), 169–183 (1999)

    MATH  Google Scholar 

  2. Dehghan, M.: Solution of a partial integro-differential equation arising from viscoelasticity. Int. J. Comput. Math. 83(1), 123–129 (2006)

    Article  MATH  Google Scholar 

  3. Miller, R.: An integro-differential equation for rigid heat conductors with memory. J. Math. Anal. Appl. 66(2), 313–332 (1978)

    Article  MATH  Google Scholar 

  4. Zhu, J.: Jump diffusion in credit barrier modeling: a partial integro-differential equation approach. In: Econometrics and risk management. Emerald (MCB UP), 22, 195-214 (2008)

  5. Tang, T.: A finite difference scheme for a partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)

    Article  MATH  Google Scholar 

  6. Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13, 93–99 (1993)

    Article  MATH  Google Scholar 

  7. Chen, H., Xu, D.: A compact difference scheme for an evolution equation with a weakly singular kernel. Numer. Math. Theory Methods Appl. 4, 559–572 (2012)

    MATH  Google Scholar 

  8. Xu, D.: On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel I: smooth initial data. Appl. Math. Comput. 58, 1–27 (1993)

    MATH  Google Scholar 

  9. Xu, D.: On the discretization in time for a partial integro-differential equations with a weakly singular kernel II: nonsmooth initial data. Appl. Math. Comput. 58, 29–60 (1993)

    Google Scholar 

  10. Qiu, W., Xu, D., Guo, J.: The Crank-Nicolson-type Sinc-Galerkin method for the fourth-order partial integro-differential equation with a weakly singular kernel. Appl. Numer. Math. 159, 239–258 (2021)

    Article  MATH  Google Scholar 

  11. Zhou, J., Xu, D., Dai, X.: Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel. Comput. Appl. Math. 38(4), 38 (2019)

    Article  MATH  Google Scholar 

  12. Yan, Y., Fairweather, G.: Orthogonal spline collocation methods for some partial integro-differential equations. SIAM J. Numer. Anal. 29, 755–768 (1992)

    Article  MATH  Google Scholar 

  13. Yi, L., Guo, B.: An h-p version of the continuous Petrov-Galerkin finite element method for Volterra integro-differential equations with smooth and non-smooth kernels. SIAM J. Numer. Anal. 53, 2677–2704 (2015)

    Article  MATH  Google Scholar 

  14. Cen, D., Wang, Z., Mo, Y.: Second order difference schemes for time-fractional KdV-Burgers’ equation with initial singularity. Appl. Math. Lett. 112, 106829 (2021)

    Article  MATH  Google Scholar 

  15. Ou, C., Cen, D., Vong, S., Wang, Z.: Mathematical analysis and numerical methods for Caputo-Hadamard fractional diffusion-wave equations. Appl. Numer. Math. 177, 34–57 (2022)

    Article  MATH  Google Scholar 

  16. Cen, D., Wang, Z.: Time two-grid technique combined with temporal second order difference method for two-dimensional semilinear fractional sub-diffusion equations. Appl. Math. Lett. 129, 107919 (2022)

    Article  MATH  Google Scholar 

  17. He, D., Pan, K.: Maximum norm error analysis of an unconditionally stable semi-implicit scheme for multi-dimensional Allen-Cahn equations. Numerical Methods for Partial Differential Equations 35(3), 955–975 (2019)

    Article  MATH  Google Scholar 

  18. Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020)

    Article  MATH  Google Scholar 

  19. Qiao, L., Xu, D.: BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels. Comput. Math. Appl. 78, 3807–3820 (2019)

    Article  MATH  Google Scholar 

  20. Qiao, L., Xu, D., Yan, Y.: High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Math. Method Appl. Sci. 43, 5162–5178 (2020)

    Article  MATH  Google Scholar 

  21. Fujita, Y.: Integro-differential equation which interpolates the heat equation and the wave equation (I). Osaka J. Math. 27, 309–321 (1990)

    MATH  Google Scholar 

  22. Fujita, Y.: Integro-differential equation which interpolates the heat equation and the wave equation (II). Osaka J. Math. 27, 797–804 (1990)

    MATH  Google Scholar 

  23. Zaeri, S., Saeedi, H., Izadi, M.: Fractional integration operator for numerical solution of the integro-partial time fractional diffusion heat equation with weakly singular kernel. Asian-Eur. J. Math. 10(04), 1750071 (2017)

    Article  MATH  Google Scholar 

  24. Renardy, M.: Mathematical analysis of viscoelastic flows. Annu. Rev. Fluid Mech. 21(1), 21–34 (1989)

    Article  MATH  Google Scholar 

  25. Xu, D.: Finite element methods for the nonlinear integro-differential equations. Appl. Math. Comput. 58, 241–273 (1993)

    MATH  Google Scholar 

  26. Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA J. Numer. Anal. 30, 555–578 (2009)

    Article  MATH  Google Scholar 

  27. Chen, S., Liu, F.: ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation. J. Appl. Math. Comput. 26, 295–311 (2008)

    Article  MATH  Google Scholar 

  28. Zhang, Y., Sun, Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MATH  Google Scholar 

  29. Zhang, Y., Sun, Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MATH  Google Scholar 

  30. Lubich, Ch.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 187–199 (1988)

    MATH  Google Scholar 

  31. Xu, D.: The global behavior of time discretization for an abstract Volterra equation in Hilbert space. Calcolo 34, 71–104 (1997)

    MATH  Google Scholar 

  32. Zhang, Y., Sun, Z., Wu, H.: Error estimates of Crank-Nicolson type difference schemes for the sub-diffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)

    Article  MATH  Google Scholar 

  33. Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MATH  Google Scholar 

  34. Sun, Z.: Numerical methods for partial differential equations (in Chinese). Science Press, Beijing (2005)

  35. Sun, Z.: The method of order reduction and its application to the numerical solutions of partial differential equations. Science Press, Beijing (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehua Yang.

Ethics declarations

Conflict of interest

The authors declare to have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by National Natural Science Foundation of China (12126321), Scientific Research Fund of Hunan Provincial Education Department (21B0550), Hunan Provincial Natural Science Foundation of China (2022JJ50083, 2021JJ30209)

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 83 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Y. & Yang, X. An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space. J. Appl. Math. Comput. 69, 651–674 (2023). https://doi.org/10.1007/s12190-022-01760-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01760-9

Keywords

AMS Subject Classification

Navigation