Skip to main content
Log in

Stability and bifurcation of a discrete predator-prey system with Allee effect and other food resource for the predators

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Concerned in this paper is a discrete predator-prey system with Allee effect and other food resources for the predators. The conditions on the existence and stability of fixed points are obtained. It is shown that the system can undergo fold bifurcation and flip bifurcation by using the center manifold theorem and bifurcation theory. Numerical simulations are provided to illustrate the feasibility of the main results and the influence of Allee effect on the stability of the system. Our study indicates that other food resources for the predator can enrich the dynamical behaviours of the system, including cascades of period-doubling bifurcation in orbits of period-2, 4, 8, and chaotic sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma, Z.: Mathematical Modelling and Study of Population Ecology. Anhui Education Press, (1996)

  2. Dennis, B.: Allee effects: population growth, critical density, and the chance of extinction. Nat. Resour. Model. 3(4), 481–538 (1989)

    Article  MATH  Google Scholar 

  3. Xiao, Z., Li, Z.: Stability and bifurcation in a stage-structured predator-prey model with Allee effect and time delay. Int. J. Appl. Math. 49(1), 6–13 (2019)

    Google Scholar 

  4. Zhu, Z., He, M., Li, Z., Chen, F.: Stability and bifurcation in a Logistic model with Allee effect and feedback control. Int. J. Bifurcation and Chaos 30(15), 2050231 (2020)

    Article  MATH  Google Scholar 

  5. Lv, Y., Chen, L., Chen, F., Li, Z.: Stability and bifurcation in an SI epidemic model with additive Allee effect and time delay. Int. J. Bifurcation and Chaos 31(04), 2150060 (2021)

    Article  MATH  Google Scholar 

  6. Chen, F., Guan, X., Huang, X., Deng, H.: Dynamic behaviors of a Lotka-Volterra type predator-prey system with Allee effect on the predator species and density dependent birth rate on the prey species. Open Math. 17(1), 1186–1202 (2019)

    Article  Google Scholar 

  7. Rebelo, C., Soresina, C.: Coexistence in seasonally varying predator-prey systems with Allee effect. Nonlinear Anal. Real World Appl. 55, 103140 (2020)

    Article  MATH  Google Scholar 

  8. Lai, L., Zhu, Z., Chen, F.: Stability and bifurcation in a predator-prey model with the additive Allee effect and the fear effect. Mathematics 8(8), 1280 (2020)

    Article  Google Scholar 

  9. Lin, Q.: Allee effect increasing the final density of the species subject to the Allee effect in a Lotka-Volterra commensal symbiosis model. Adv. Diff. Equ. 2018(1), 1–9 (2018)

    Article  MATH  Google Scholar 

  10. Lei, C.: Dynamic behaviors of a Holling type commensal symbiosis model with the first species subject to Allee effect. Commun. Math. Biol. Neurosci. 2019, 3 (2019)

  11. Celik, C., Duman, O.: Allee effect in a discrete-time predator-prey system. Chaos Solitons Fractals 40(4), 1956–1962 (2009)

    Article  MATH  Google Scholar 

  12. Chen, X., Fu, X., Jing, Z.: Dynamics in a discrete-time predator-prey system with Allee effect. Acta Math. Appl. Sin. Engl. Ser. 29(1), 143–164 (2013)

    Article  MATH  Google Scholar 

  13. Ye, Y., Liu, H., Wei, Y., Ma, M., Zhang, K.: Dynamic study of a predator-prey model with weak Allee effect and delay. Adv. Math. Phys. 2019, 7296461 (2019)

  14. Huang, Y., Zhu, Z., Li, Z.: Modeling the Allee effect and fear effect in predator-prey system incorporating a prey refuge. Adv. Diff. Equ. 2020(1), 1–13 (2020)

    Article  MATH  Google Scholar 

  15. Guan, X., Chen, F.: Dynamical analysis of a two species amensalism model with Beddington-Deangelis functional response and Allee effect on the second species. Nonlinear Anal. Real World Appl. 48, 71–93 (2019)

    Article  MATH  Google Scholar 

  16. Song, D., Song, Y., Li, C.: Stability and turing patterns in a predator-prey model with hunting cooperation and Allee effect in prey population. Int. J. Bifurcation and Chaos 30(09), 2050137 (2020)

    Article  MATH  Google Scholar 

  17. Wu, R., Li, L., Lin, Q.: A Holling type commensal symbiosis model involving Allee effect. Commun. Math. Biol. Neurosci. 2018, 6 (2018)

  18. Lin, Q.: Stability analysis of a single species Logistic model with Allee effect and feedback control. Adv. Diff. Equ. 2018(1), 1–13 (2018)

    Article  Google Scholar 

  19. Chen, B.: Dynamic behaviors of a commensal symbiosis model involving Allee effect and one party can not survive independently. Adv. Diff. Equ. 2018(1), 1–12 (2018)

    Article  MATH  Google Scholar 

  20. Lv, Y., Chen, L., Chen, F.: Stability and bifurcation in a single species Logistic model with additive Allee effect and feedback control. Adv. Diff. Equ. 2020(1), 1–15 (2020)

    Article  MATH  Google Scholar 

  21. Xiao, Z., Xie, X., Xue, Y.: Stability and bifurcation in a Holling type II predator-prey model with Allee effect and time delay. Adv. Diff. Equ. 2018(1), 1–21 (2018)

    Article  MATH  Google Scholar 

  22. Liu, X., Xiao, D.: Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete Contin. Dyn. Syst. Ser. B 6(3), 559 (2006)

    MATH  Google Scholar 

  23. Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predator-prey system. Chaos Solitons Fractals 32(1), 80–94 (2007)

    Article  MATH  Google Scholar 

  24. He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal. Real World Appl. 12(1), 403–417 (2011)

    Article  MATH  Google Scholar 

  25. Chen, B.: Global attractivity of a discrete competition model. Adv. Diff. Equ. 2016(1), 1–11 (2016)

    Article  Google Scholar 

  26. Cheng, L., Cao, H.: Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee effect. Commun Nonlinear Sci Numer Simul 38, 288–302 (2016)

    Article  MATH  Google Scholar 

  27. Cui, Q., Zhang, Q., Qiu, Z., Hu, Z.: Complex dynamics of a discrete-time predator-prey system with Holling IV functional response. Chaos Solitons Fractals 87, 158–171 (2016)

    Article  MATH  Google Scholar 

  28. Huang, T., Zhang, H.: Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system. Chaos Solitons Fractals 91, 92–107 (2016)

    Article  MATH  Google Scholar 

  29. Salman, S., Yousef, A., Elsadany, A.: Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response. Chaos Solitons Fractals 93, 20–31 (2016)

    Article  MATH  Google Scholar 

  30. Banerjee, R., Das, P., Mukherjee, D.: Stability and permanence of a discrete-time two-prey one-predator system with Holling type-III functional response. Chaos Solitons Fractals 117, 240–248 (2018)

    Article  MATH  Google Scholar 

  31. Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator-prey model with nonmonotonic functional response. J. Math. Anal. Appl. 464(1), 201–230 (2018)

    Article  MATH  Google Scholar 

  32. Zhao, J., Yan, Y.: Stability and bifurcation analysis of a discrete predator-prey system with modified Holling-Tanner functional response. Adv. Diff. Equ. 2018(1), 1–18 (2018)

    Article  MATH  Google Scholar 

  33. Rana, S.S.: Bifurcations and chaos control in a discrete-time predator-prey system of Leslie type. J. Appl. Anal. Comput 9(1), 31–44 (2019)

    MATH  Google Scholar 

  34. Santra, P., Mahapatra, G., Phaijoo, G.: Bifurcation and chaos of a discrete predator-prey model with Crowley–Martin functional response incorporating proportional prey refuge. Math. Probl. Eng. 2020, 5309814 (2020)

  35. Singh, A., Deolia, P.: Dynamical analysis and chaos control in discrete-time prey-predator model. Commun Nonlinear Sci Numer Simul 90, 105313 (2020)

    Article  MATH  Google Scholar 

  36. Chen, J., He, X., Chen, F.: The influence of fear effect to a discrete-time predator-prey system with predator has other food resource. Mathematics 9(8), 865 (2021)

    Article  Google Scholar 

  37. Singh, A., Malik, P.: Bifurcations in a modified Leslie-Gower predator-prey discrete model with Michaelis-Menten prey harvesting. J. Appl. Math. Comput 67, 1–32 (2021)

    Article  MATH  Google Scholar 

  38. Wang, W., Zhang, Y., Liu, C.: Analysis of a discrete-time predator-prey system with Allee effect. Ecol. Complex. 8(1), 81–85 (2011)

    Article  Google Scholar 

  39. Işık, S.: A study of stability and bifurcation analysis in discrete-time predator-prey system involving the Allee effect. Int. J. Biomath. 12(01), 1950011 (2019)

    Article  MATH  Google Scholar 

  40. Cheng, L., Cao, H.: Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee effect. Commun. Nonlinear. Sci. 38, 288–302 (2016)

    Article  MATH  Google Scholar 

  41. Pal, S., Sasmal, S.K., Pal, N.: Chaos control in a discrete-time predator-prey model with weak Allee effect. Int. J. Biomath. 11(07), 1850089 (2018)

    Article  MATH  Google Scholar 

  42. Zhu, Z., Wu, R., Lai, L., Yu, X.: The influence of fear effect to the Lotka-Volterra predator-prey system with predator has other food resource. Adv. Diff. Equ. 2020(1), 1–13 (2020)

    Article  MATH  Google Scholar 

  43. Chen, G., Teng, Z.: On the stability in a discrete two-species competition system. J. Appl. Math. Comput. 38(1), 25–39 (2012)

    Article  MATH  Google Scholar 

  44. Liaw, D.: Application of center manifold reduction to nonlinear system stabilization. Appl. Math. Comput. 91(2–3), 243–258 (1998)

    MATH  Google Scholar 

  45. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, NY (2003)

    MATH  Google Scholar 

  46. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC press, (1998)

Download references

Acknowledgements

This work was supported partially by the Natural Science Foundation of Fujian Province (2020J01499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, Y., Zhu, Z. et al. Stability and bifurcation of a discrete predator-prey system with Allee effect and other food resource for the predators. J. Appl. Math. Comput. 69, 529–548 (2023). https://doi.org/10.1007/s12190-022-01764-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01764-5

Keywords

Mathematics Subject Classification