Skip to main content
Log in

Vector Aitken extrapolation method for multilinear PageRank computations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The multilinear PageRank is an extension of the well-known PageRank model. The solution of this model comes as a Z-eigenvector of a non-negative tensor. High-order power method is one of the most widely used ways of computing the multilinear PageRank vector. Even for irreducible and aperiodic tensors, the approach may not converge and when it converges, the convergence may be slow. For larger problems, these two limitations make computing the eigenvectors difficult or impossible. The paper proposes a new method for accelerating the computation of the multilinear PageRank vector using a vector Aitken extrapolation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alves-Pereira, A.R., Nunes-Pereira, E.J., Berberan-Santos, M.N.: Radiation trapping in 1D using the Markov chain formalism: a computational physics project. Eur. J. Phys. 28, 1105–1124 (2007)

    Article  Google Scholar 

  2. Benson, A.R, Gleich, D.F., Leskovec, J.: Tensor spectral clustering for partitioning higher-order network structures. In: SDM15. pp. 118–126. SIAM (2015)

  3. Benson, A.R., Gleich, D.F., Lim, L.H.: The spacey random walk: a stochastic process for higher-order data. SIAM Rev. 59, 321–345 (2017)

    Article  MATH  Google Scholar 

  4. Brezinski, C., Zaglia, M.R.: Extrapolation Methods: Theory and Practice. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  5. Brezinski, C.: Généralisations de la transformation de Shanks, de la table de Padé et de l’\(\varepsilon \)-algorithme. Calcolo 12, 317–360 (1975)

    Article  MATH  Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  7. Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)

    Article  MATH  Google Scholar 

  8. Chang, K.C., Pearson, K., Zhang, T.: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)

    Article  MATH  Google Scholar 

  9. Chang, K.C., Pearson, K., Zhang, T.: Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166–4182 (2013)

    Article  MATH  Google Scholar 

  10. Chang, K.C., Zhang, T.: On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors. J. Math. Anal. 408, 525–540 (2013)

    Article  MATH  Google Scholar 

  11. Chu, M.T., Wu, S.: Markov chains with memory, tensor formulation, and the dynamics of power iteration. Appl. Math. Comput. 303, 226–239 (2017)

    MATH  Google Scholar 

  12. Chu, T., Wu, S.J.: On the second dominant eigenvalue affecting the power method for transition probability tensors. Technical report. 336–343 (2014)

  13. Eddy, R.P.: Extrapolation to the limit of a vector sequence. Information Linkage Between Applied Mathematics and Industry. PCC Wang. Academic Press, New York (1979)

  14. Formosinho, S.: A Markov chain method for simulating the time evolution of drugs in pharmacokinetics systems. Rev. Port. Quim. 26, 14–20 (1984)

    Google Scholar 

  15. Gautier, A., Tudisco, F., Hein, M.: A unifying Perron-Frobenius theorem for nonnegative tensors via multihomogeneous maps. SIAM J. Matrix Anal. Appl. 40, 1206–1231 (2019)

    Article  MATH  Google Scholar 

  16. Gleich, D.F., Lim, L.H., Yu, Y.: Multilinear pagerank. SIAM J. Matrix Anal. Appl. 36, 1507–1541 (2015)

    Article  MATH  Google Scholar 

  17. Grimmett, G., Stirzaker, D.: Probability and random processes. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  18. Haveliwala, T., Kamvar, S.: The second eigenvalue of the Google matrix. Technical report. Stanford University (2003)

  19. Jbilou, K., Sadok, H.: Vector extrapolation methods. Applications and numerical comparison. J. Comput. Appl. Math. 122, 149–165 (2000)

    Article  MATH  Google Scholar 

  20. Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)

    Article  MATH  Google Scholar 

  21. Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)

    Article  MATH  Google Scholar 

  22. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computations. In: Proceedings of the 12th international conference on World Wide Web, pp. 261–270. New York: ACM Press (2003)

  23. Langville, A.N., Meyer, C.D.: Google’s PageRank and beyond. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  24. Li, W., Liu, D., Ng, M.K., Vong, S.W.: The uniqueness of multilinear PageRank vectors. Numer Linear Algebra Appl. 24, e2107 (2017)

    Article  MATH  Google Scholar 

  25. Liu, D., Li, W., Vong, S.W.: Relaxation methods for solving the tensor equation arising from the higher-order Markov chains. Numer Linear Algebra Appl 26, e2260 (2019)

    Article  MATH  Google Scholar 

  26. Li, W., Liu, D., Vong, S.W., Xiao, M.: Multilinear PageRank: uniqueness, error bound and perturbation analysis. Appl. Numer. Math. 156, 584–607 (2020)

    Article  MATH  Google Scholar 

  27. Li, W., Ng, M.K.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62, 362–385 (2014)

    Article  MATH  Google Scholar 

  28. Melnyk, S.S., Usatenko, O.V., Yampol’skii, V.A.: Memory functions of the additive Markov chains: applications to complex dynamic systems. Phys. A Stat. Mech. Appl. 361, 405–415 (2006)

    Article  Google Scholar 

  29. Mešina, M.: Convergence acceleration for the iterative solution of x=Ax+f. Comput. Methods Appl. Mech. Eng. 10, 165–173 (1977)

    Article  MATH  Google Scholar 

  30. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical report. Stanford University, Stanford, CA (1999)

  31. Pillai, S.U., Suel, T., Cha, S.: The Perron-Frobenius theorem: some of its applications. IEEE Signal Process. Mag. 22, 62–75 (2005)

    Article  Google Scholar 

  32. Pugachev, B.P.: Acceleration of the convergence of iterative processes and a method of solving systems of non-linear equations. USSR Comput. Math. Math. Phys. 17, 199–207 (1977)

    Article  MATH  Google Scholar 

  33. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MATH  Google Scholar 

  34. Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–233 (1987)

    Article  MATH  Google Scholar 

  35. Wynn, P.: Acceleration technique for iterated vector and matrix problems. Math. Comput. 16, 301–322 (1962)

    Article  MATH  Google Scholar 

  36. Yu, G., Zhou, Y., Lv, L.: Accelerating Power Methods for Higher-order Markov Chains. arXiv preprint arXiv:2003.00686, (2020)

Download references

Acknowledgements

We would like to express sincere thanks to the Reviewers for their constructive and interesting comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslem Hafid Bentbib.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare and have no financial interest to report regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubekraoui, M., Bentbib, A.H. & Jbilou, K. Vector Aitken extrapolation method for multilinear PageRank computations. J. Appl. Math. Comput. 69, 1145–1172 (2023). https://doi.org/10.1007/s12190-022-01786-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01786-z

Keywords

Mathematics Subject Classification