Abstract
The multilinear PageRank is an extension of the well-known PageRank model. The solution of this model comes as a Z-eigenvector of a non-negative tensor. High-order power method is one of the most widely used ways of computing the multilinear PageRank vector. Even for irreducible and aperiodic tensors, the approach may not converge and when it converges, the convergence may be slow. For larger problems, these two limitations make computing the eigenvectors difficult or impossible. The paper proposes a new method for accelerating the computation of the multilinear PageRank vector using a vector Aitken extrapolation method.

Similar content being viewed by others
References
Alves-Pereira, A.R., Nunes-Pereira, E.J., Berberan-Santos, M.N.: Radiation trapping in 1D using the Markov chain formalism: a computational physics project. Eur. J. Phys. 28, 1105–1124 (2007)
Benson, A.R, Gleich, D.F., Leskovec, J.: Tensor spectral clustering for partitioning higher-order network structures. In: SDM15. pp. 118–126. SIAM (2015)
Benson, A.R., Gleich, D.F., Lim, L.H.: The spacey random walk: a stochastic process for higher-order data. SIAM Rev. 59, 321–345 (2017)
Brezinski, C., Zaglia, M.R.: Extrapolation Methods: Theory and Practice. North-Holland, Amsterdam (1991)
Brezinski, C.: Généralisations de la transformation de Shanks, de la table de Padé et de l’\(\varepsilon \)-algorithme. Calcolo 12, 317–360 (1975)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)
Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)
Chang, K.C., Pearson, K., Zhang, T.: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)
Chang, K.C., Pearson, K., Zhang, T.: Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166–4182 (2013)
Chang, K.C., Zhang, T.: On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors. J. Math. Anal. 408, 525–540 (2013)
Chu, M.T., Wu, S.: Markov chains with memory, tensor formulation, and the dynamics of power iteration. Appl. Math. Comput. 303, 226–239 (2017)
Chu, T., Wu, S.J.: On the second dominant eigenvalue affecting the power method for transition probability tensors. Technical report. 336–343 (2014)
Eddy, R.P.: Extrapolation to the limit of a vector sequence. Information Linkage Between Applied Mathematics and Industry. PCC Wang. Academic Press, New York (1979)
Formosinho, S.: A Markov chain method for simulating the time evolution of drugs in pharmacokinetics systems. Rev. Port. Quim. 26, 14–20 (1984)
Gautier, A., Tudisco, F., Hein, M.: A unifying Perron-Frobenius theorem for nonnegative tensors via multihomogeneous maps. SIAM J. Matrix Anal. Appl. 40, 1206–1231 (2019)
Gleich, D.F., Lim, L.H., Yu, Y.: Multilinear pagerank. SIAM J. Matrix Anal. Appl. 36, 1507–1541 (2015)
Grimmett, G., Stirzaker, D.: Probability and random processes. Oxford University Press, Oxford (2001)
Haveliwala, T., Kamvar, S.: The second eigenvalue of the Google matrix. Technical report. Stanford University (2003)
Jbilou, K., Sadok, H.: Vector extrapolation methods. Applications and numerical comparison. J. Comput. Appl. Math. 122, 149–165 (2000)
Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)
Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computations. In: Proceedings of the 12th international conference on World Wide Web, pp. 261–270. New York: ACM Press (2003)
Langville, A.N., Meyer, C.D.: Google’s PageRank and beyond. Princeton University Press, Princeton (2011)
Li, W., Liu, D., Ng, M.K., Vong, S.W.: The uniqueness of multilinear PageRank vectors. Numer Linear Algebra Appl. 24, e2107 (2017)
Liu, D., Li, W., Vong, S.W.: Relaxation methods for solving the tensor equation arising from the higher-order Markov chains. Numer Linear Algebra Appl 26, e2260 (2019)
Li, W., Liu, D., Vong, S.W., Xiao, M.: Multilinear PageRank: uniqueness, error bound and perturbation analysis. Appl. Numer. Math. 156, 584–607 (2020)
Li, W., Ng, M.K.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62, 362–385 (2014)
Melnyk, S.S., Usatenko, O.V., Yampol’skii, V.A.: Memory functions of the additive Markov chains: applications to complex dynamic systems. Phys. A Stat. Mech. Appl. 361, 405–415 (2006)
Mešina, M.: Convergence acceleration for the iterative solution of x=Ax+f. Comput. Methods Appl. Mech. Eng. 10, 165–173 (1977)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical report. Stanford University, Stanford, CA (1999)
Pillai, S.U., Suel, T., Cha, S.: The Perron-Frobenius theorem: some of its applications. IEEE Signal Process. Mag. 22, 62–75 (2005)
Pugachev, B.P.: Acceleration of the convergence of iterative processes and a method of solving systems of non-linear equations. USSR Comput. Math. Math. Phys. 17, 199–207 (1977)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–233 (1987)
Wynn, P.: Acceleration technique for iterated vector and matrix problems. Math. Comput. 16, 301–322 (1962)
Yu, G., Zhou, Y., Lv, L.: Accelerating Power Methods for Higher-order Markov Chains. arXiv preprint arXiv:2003.00686, (2020)
Acknowledgements
We would like to express sincere thanks to the Reviewers for their constructive and interesting comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare and have no financial interest to report regarding the publication of this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Boubekraoui, M., Bentbib, A.H. & Jbilou, K. Vector Aitken extrapolation method for multilinear PageRank computations. J. Appl. Math. Comput. 69, 1145–1172 (2023). https://doi.org/10.1007/s12190-022-01786-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-022-01786-z