Skip to main content

Advertisement

Log in

Some quantum synchronizable codes with explicit distance

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Quantum synchronizable codes can be used to guard against both the interference of quantum noise on qubits and misalignment in block synchronization. In this paper, we utilize classical BCH codes to obtain three classes of quantum synchronizable codes. These codes can achieve the best achievable synchronization recovery capabilities. By computing the exact minimum distance of classical BCH codes, we determine the error-correcting performance towards Pauli errors of the resulting synchronizable codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 52, 2493–2496 (1995)

    Article  Google Scholar 

  2. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A. 452, 2551–2577 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A. 54, 1098–1105 (1996)

    Article  Google Scholar 

  4. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A. 54, 1862–1868 (1996)

    Article  MathSciNet  Google Scholar 

  5. MacKay, D., Mitchison, G., McFadden, P.: Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory. 50, 2315–2330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \(\rm GF (4)\). IEEE Trans. Inf. Theory. 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ashikhmin, A., Knill, E.: Nonbinary quantum stablizer codes. IEEE Trans. Inf. Theory. 47, 3065–3072 (2001)

    Article  MATH  Google Scholar 

  8. Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Trans. Inf. Theory. 45, 2495–2498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory. 53, 1183–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujiwara, Y.: Block synchronization for quantum information. Phys. Rev. A. 87, 109–120 (2013)

    Article  Google Scholar 

  11. Fujiwara, Y., Tonchev, V.D., Wong, T.W.H.: Algebraic techniques in designing quantum synchronizable codes. Phys. Rev. A. 88, 012318–18 (2013)

    Article  Google Scholar 

  12. Fujiwara, Y., Vandendriessche, P.: Quantum synchronizable codes from finite geometries. IEEE Trans. Inf. Theory. 60, 7345–7354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xie, Y., Yuan, J., Fujiwara, Y.(2014): Quantum synchronizable codes from quadratic residue codes and their supercodes. In Proc. IEEE Inf. Theory Workshop (ITW) 172-176

  14. Xie, Y., Yang, L., Yuan, J.: \(q\)-Ary chain-containing quantum synchronizable codes. IEEE Commun. Lett. 20, 414–417 (2016)

    Article  Google Scholar 

  15. Guenda, K., La Guardia, G.G., Gulliver, T.A.: Algebraic quantum synchronizable codes. J. Appl. Math. Comput. 55, 393–407 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, L., Ma, Z.: Non-binary quantum synchronizable codes from repeated-root cyclic codes. IEEE Trans. Inf. Theory. 64, 1461–1470 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, L., Zhu, S., Liu, L.: Quantum synchronizable codes from the cyclotomy of order four. IEEE Commun. Lett. 23, 12–15 (2019)

    Article  Google Scholar 

  18. Luo, L., Ma, Z., Lin, D.: Two new families of quantum synchronizable codes. Quantum. Inf. Process. 18(9), 1–8 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X., Yue, Q.: A new family of quantum synchronizable codes. IEEE Commun. Lett. 25, 342–345 (2021)

    Article  Google Scholar 

  20. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  21. Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A. 54, 4741–4751 (1996)

    Article  MathSciNet  Google Scholar 

  22. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  23. Grassl, M.(2022): Bounds on the minimum distance of linear codes. http://www.codetables.de, accessed on 10th Aug

Download references

Acknowledgements

The authors would like to thank the anonymous referees who gave many helpful comments and suggestions to greatly improve the presentation of the paper. This work is supported by the National Natural Science Foundation of China under Grant Nos. 61972126, 62002093, U21A20428 and 12171134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshan Kai.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

All the procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Kai, X. Some quantum synchronizable codes with explicit distance. J. Appl. Math. Comput. 69, 1751–1764 (2023). https://doi.org/10.1007/s12190-022-01811-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01811-1

Keywords

Mathematics Subject Classification