Skip to main content
Log in

Solving nonlinear equations with a direct Broyden method and its acceleration

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A quasi-Newton method called the direct Broyden method is considered in this paper, which satisfies the least change principle and the direct tangent condition. The direct Broyden method can ensure that the quasi-Newton matrix equals the Jacobian matrix along step direction and accumulates more derivative information of the function. Moreover, we present an accelerated version of the new method and prove its global and superlinear convergence. Extensive numerical results are reported to show the efficiency of the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yuan, Y.X.: Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numer. Algebra Control Optim. 1(1), 15–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dai, Z., Li, T., Yang, M.: Forecasting stock return volatility: the role of shrinkage approaches in a data-rich environment J. Forecast. 41, 980–996 (2022)

  3. Dai, Z., Zhu, H.: Time-varying spillover effects and investment strategies between wti crude oil, natural gas and Chinese stock markets related to belt and road initiative. Energy Econ. 108, 105883 (2022)

    Article  Google Scholar 

  4. Li, D.H., Fukushima, M.: A globally and superlinearly convergent Gauss–Newton-based bfgs method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, L.: A modified Levenberg–Marquardt method with line search for nonlinear equations. Comput. Optim. Appl. 65(3), 753–779 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Stanimirović, P.S., Ivanov, B., Ma, H., Mosić, D.: A survey of gradient methods for solving nonlinear optimization. Electron. Res. Arch. 4, 1573 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yuan, Y.: Recent advances in trust region algorithms. Math. Program. 151(1), 249–281 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gu, G.Z., Li, D.H., Qi, L., Zhou, S.Z.: Descent directions of quasi-newton methods for symmetric nonlinear equations. SIAM J. Numer. Anal. 40(5), 1763–1774 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, H.P., Li, D.H.: Adjoint Broyden methods for symmetric nonlinear equations. Pac. J. Optim. 13(4), 645–663 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Zhou, W.J.: A globally convergent bfgs method for symmetric nonlinear equations. J. Ind. Manag. Optim. 18, 1295 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rodomanov, A., Nesterov, Y.: Rates of superlinear convergence for classical quasi-newton methods. Math. Program. 194, 159–190 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rodomanov, A., Nesterov, Y.: New results on superlinear convergence of classical quasi-Newton methods. J. Optim. Theory Appl. 188(3), 744–769 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boutet, N., Haelterman, R., Degroote, J.: Secant update generalized version of psb: a new approach. Comput. Optim. Appl. 78(3), 953–982 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yuan, G.L., Zhang, M.X., Zhou, Y.J.: Adaptive scaling damped bfgs method without gradient Lipschitz continuity. Appl. Math. Lett. 124, 107634 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13(3), 181–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, H.-P., Li, D.-H.: Partitioned quasi-Newton methods for sparse nonlinear equations. Comput. Optim. Appl. 66(3), 481–505 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, W.J., Zhang, L.: A modified Broyden-like quasi-Newton method for nonlinear equations. J. Comput. Appl. Math. 372, 112744 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Powell, M.J.: A Fortran subroutine for solving systems of nonlinear algebraic equations. Technical report, Atomic Energy Research Establishment, Harwell, England (United Kingdom) (1968)

  19. Li, D.H., Zeng, J.P., Zhou, S.Z.: Convergence of Broyden-like matrix. Appl. Math. Lett. 11(5), 35–37 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28(126), 549–560 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  MATH  Google Scholar 

  22. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. La Cruz, W., Martínez, J., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75(255), 1429–1448 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7(1), 26–33 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Friedlander, A., Gomes-Ruggiero, M.A., Kozakevich, D.N., Mario Martínez, J., Augusta Santos, S.: Solving nonlinear systems of equations by means of quasi-neston methods with a nonmonotone stratgy. Optim. Methods Softw. 8(1), 25–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw.: TOMS 7(1), 17–41 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bing, Y., Lin, G.: An efficient implementation of Merrill’s method for sparse or partially separable systems of nonlinear equations. SIAM J. Optim. 1(2), 206–221 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China, grant number 11701577; the Natural Science Foundation of Hunan Province, China, grant number 2019JJ51002, 2020JJ5960; and the Natural Science Foundation of Shaanxi Province, China, grant number 2022JQ006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiping Cao.

Ethics declarations

Conflict of interest

The authors declare to have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Test functions

Appendix A: Test functions

In this appendix, we list the test functions and initial points \(x_0\), where

$$\begin{aligned} F(x)=(f_1(x),f_2(x)\ldots ,f_n(x))^T. \end{aligned}$$
  1. 1.

    Exponential function [23]

    $$\begin{aligned} f_i(x)= & {} \frac{i}{10}\left( 1-x_i^2-e^{-x_i^2}\right) , ~i=1,2,\ldots , n-1,\\ f_n= & {} \frac{n}{10}\left( 1-e^{-x_n^2}\right) .\\ x_0= & {} \left( \frac{1}{4n^2}, \frac{2}{4n^2},\ldots , \frac{n}{4n^2}\right) ^T. \end{aligned}$$
  2. 2.

    Logarithmic function [23]

    $$\begin{aligned} f_i(x)= & {} \ln (x_i+1)-\frac{x_i}{n},~i=1,2,\ldots ,n.\\ x_0= & {} (1,1,\ldots ,1)^T. \end{aligned}$$
  3. 3.

    Strictly convex function 1 [24]

    F(x) is the gradient of \(h(x)=\sum _{i=1}^n(e^{x_i}-x_i)\).

    $$\begin{aligned} f_i(x)= & {} e^{x_i}-1,~i=1,2,\ldots ,n.\\ x_0= & {} \left( \frac{1}{n},\frac{2}{n},\ldots ,1\right) ^T. \end{aligned}$$
  4. 4.

    Strictly convex function 2 [24]

    F(x) is the gradient of \(h(x)=\sum _{i=1}^n\frac{i}{10}(e^{x_i}-x_i)\).

    $$\begin{aligned} f_i(x)= & {} \frac{i}{10}\left( e^{x_i}-1\right) , ~i=1,2,\ldots ,n.\\ x_0= & {} (1,1,\ldots ,1 )^T. \end{aligned}$$
  5. 5.

    Extended Rosenbrock function (n is even) [25].

    For \(i=1,2,\ldots ,n/2\)

    $$\begin{aligned} f_{2i-1}(x)= & {} 10(x_{2i}-x_{2i-1}^2),\\ f_{2i}(x)= & {} 1-x_{2i-1}.\\ x_0= & {} (-1.2,1,\ldots ,-1.2,1)^T. \end{aligned}$$
  6. 6.

    Function 6 (n is a multiple of 3) [23].

    For \(i=1,2,\ldots ,n/3\)

    $$\begin{aligned} f_{3i-2}(x)= & {} x_{3i-2}x_{3i-1}-x_{3i}^2-1,\\ f_{3i-1}(x)= & {} x_{3i-2}x_{3i-1}x_{3i}-x_{3i-2}^2+x_{3i-1}^2-2,\\ f_{3i}(x)= & {} e^{-x_{3i-2}}-e^{-x_{3i-1}}.\\ x_0= & {} (1,1,\ldots ,1)^T. \end{aligned}$$
  7. 7.

    Tridimensional valley function (n is a multiple of 3) [26]

    For \(i=1,2,\ldots ,n/3,\)

    $$\begin{aligned} f_{3i-2}(x)= & {} (c_2x_{3i-2}^3+c_1x_{3i-2})\exp \left( \frac{-x_{3i-2}^2}{100}\right) -1,\\ f_{3i-1}(x)= & {} 10 (\sin (x_{3i-2})-x_{3i-1} ),\\ f_{3i}(x)= & {} 10 (\cos (x_{3i-2})-x_{3i}),\\ \text{ where }{} & {} \\ c_1= & {} 1.003344481605351,\\ c_2= & {} -3.344481605351171\times 10^{-3}.\\ x_0= & {} (2,1,2,\ldots ,2,1,2)^T. \end{aligned}$$
  8. 8.

    Extended Powell singular function (n is a multiple of 4) [27]

    For \(i=1,2,\ldots ,n/4,\)

    $$\begin{aligned} f_{4i-3}(x)= & {} x_{4i-3}+10x_{4i-2},\\ f_{4i-2}(x)= & {} \sqrt{5}(x_{4i-1}-x_{4i}),\\ f_{4i-1}(x)= & {} (x_{4i-2}-2x_{4i-1})^2,\\ f_{4i}(x)= & {} \sqrt{10}(x_{4i-3}-x_{4i})^2.\\ x_0= & {} (1.5\times 10^{-4},1.5\times 10^{-4},\ldots ,1.5\times 10^{-4})^T. \end{aligned}$$
  9. 9.

    Tridiagonal exponential problem [28]

    $$\begin{aligned} f_1(x)= & {} x_1 - \exp (\cos (h (x_1 + x_2))),\\ f_i(x)= & {} x_i - \exp (\cos (h(x_{i-1} + x_i + x_{i+1}))),~i=2,\ldots ,n-1,\\ f_n(x)= & {} x_n - \exp (\cos (h(x_{n-1} + x_n))).\\ h= & {} 1/(n+1).\\ x_0= & {} (1.5,\ldots ,1.5)^T. \end{aligned}$$
  10. 10.

    Discrete boundary value problem [27]

    $$\begin{aligned} f_1(x)= & {} 2x_1+0.5h^2(x_1+h)^3-x_2,\\ f_i(x)= & {} 2x_i+0.5h^2(x_i+ih)^3-x_{i-1}+x_{i+1},~i=2,\ldots ,n-1,\\ f_n(x)= & {} 2x_n+0.5h^2(x_n+nh)^3-x_{n-1}.\\ h= & {} 1/(n+1).\\ x_0= & {} (h(h-1),h(2h-1),\ldots ,h(nh-1))^T. \end{aligned}$$
  11. 11.

    Discretized two-point boundary value problem

    $$\begin{aligned} f_1(x)= & {} 8x_1-x_2+m(\sin x_1-1),\\ f_i(x)= & {} -x_{i-1}+8x_i-x_{i+1}m(\sin x_i -1),~i=2,\ldots ,n-1,\\ f_n(x)= & {} -x_{n-1}+8x_n+m(\sin x_n-1).\\ m= & {} 1/(n+1)^2.\\ x_0= & {} \left( \frac{1}{n},\frac{2}{n},\ldots ,1\right) ^T. \end{aligned}$$
  12. 12.

    Trigonometric function [23]

    $$\begin{aligned} f_i(x)= & {} 2\left( n+i(1-\cos x_i)-\sin x_i-\sum _{j=1}^n \cos x_j\right) (2\sin x_i-\cos x_i),\\ x_0= & {} \left( \frac{101}{100n},\ldots ,\frac{101}{100n}\right) ^T. \end{aligned}$$
  13. 13.

    Penalty I function [23]

    $$\begin{aligned} f_i(x)= & {} \sqrt{10^{-5}}(x_i-1),~ i=1,2,\ldots ,n-1,\\ f_n(x)= & {} \left( \frac{1}{4n}\right) \sum _{j=1}^n x_j^2-\frac{1}{4}.\\ x_0= & {} \left( \frac{1}{3},\frac{1}{3},\ldots , \frac{1}{3}\right) ^T. \end{aligned}$$
  14. 14.

    Hanbook function [23].

    $$\begin{aligned} f_i(x)= & {} 0.05(x_i-1)+2\sin \left( \sum _{j=1}^n(x_j-1)+\sum _{j=1}^n(x_j-1)^2\right) \\{} & {} (1+2(x_i-1))+2\sin \left( \sum _{j=1}^n(x_j-1)\right) ,~i=1,2,\ldots ,n.\\ x_0= & {} (5,\ldots ,5)^T. \end{aligned}$$
  15. 15.

    Linear function-rank 2 [23]

    $$\begin{aligned} f_1(x)= & {} x_1-1,\\ f_i(x)= & {} i\sum _{j=1}^n jx_j-i,~ i=2,3,\ldots ,n.\\ x_0= & {} \left( 1,\frac{1}{n},\ldots , \frac{1}{n}\right) ^T. \end{aligned}$$
  16. 16.

    Engval function

    $$\begin{aligned} f_1(x)= & {} x_1(x_1^2+x_2^2)-1,\\ f_i(x)= & {} x_i(x_{i-1}^2+2x_i^2+x_{i+1}^2)-1,~i=2,\ldots ,n-1,\\ f_n(x)= & {} x_n(x_{n-1}^2+x_n^2).\\ x_0= & {} (0,0,\ldots ,0)^T. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., An, X. & Han, J. Solving nonlinear equations with a direct Broyden method and its acceleration. J. Appl. Math. Comput. 69, 1917–1944 (2023). https://doi.org/10.1007/s12190-022-01818-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01818-8

Keywords

Mathematics Subject Classification

Navigation