Skip to main content
Log in

On the numerical solution of a class of variable coefficients parabolic moving boundary problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This study deals with a class of variable coefficients second-order parabolic moving boundary problems. The evolution of the domain is considered to be an unknown function. Based on the front-fixing approach, first, the problem is derived as a nonlinear fixed domain parabolic problem, and the uniqueness of solution of this problem is shown. An iterative approach based on a backward finite difference method is proposed to solve this nonlinear problem. The solvability of the finite difference method is shown, and the stability and convergence of the numerical solution are proved. Two examples are considered to show the efficiency and compatibility of the numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Setapa, A., Ahmad, N., Mahali, S. Mohd., Amin, M.C.I. Mohd.: Mathematical model for estimating parameters of swelling drug delivery devices in a two-phase release. Polymers 12(12), 2921 (2020)

    Article  Google Scholar 

  2. Moroney, K.M., Vynnycky, M.: Mathematical modelling of drug release from a porous granule. App. Math. Model. 100, 432 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Moroney, K.M., Kotamarthy, L., Muthancheri, I., Ramachandran, R., Vynnycky, M.: A moving-boundary model of dissolution from binary drug-excipient granules incorporating microstructure. Int. J. Pharm. 599, 120219 (2021)

    Article  Google Scholar 

  4. Ulbrich, K., Holá, K., Šubr, V., Bakandritsos, A., Tuček, J., Zbořil, R.: Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116(9), 5338 (2016)

    Article  Google Scholar 

  5. Garshasbi, M., Bagomghaleh, S.M.: Investigation of a drug release moving boundary problem in a swelling polymeric device. Int. J. Appl. Comput. Math. 8(2), 73 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garshasbi, M., Bagomghaleh, S.: Malek: an iterative approach to solve a nonlinear moving boundary problem describing the solvent diffusion within glassy polymers. Math. Methods Appl. Sci. 43(6), 3754 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferreira, J.A., Grassi, M., Gudino, E., de Oliveira, P.: A 3d model for mechanistic control of drug release. SIAM J. Appl. Math. 74(3), 620 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferreira, J.A., de Oliveira, P., Grassi, M., Romanazzi, G.: Drug release from viscoelastic swelling polymeric platforms. SIAM J. Appl. Math. 78(3), 1378 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, Y.: A free boundary problem of diffusion equation with integral condition. Appl. Anal. 85(9), 1143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, J., Li, H., Xu, Y.: Ritz-galerkin method for solving an inverse problem of parabolic equation with moving boundaries and integral condition. Appl. Anal. 98(10), 1741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, P., Das, S., Das, P., Rihan, F.A., Uzuntarla, M., Ghosh, D.: Optimal control strategy for cancer remission using combinatorial therapy: a mathematical model-based approach. Chaos Solitons Fractals 145, 110789 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Izadi, M., Dubljevic, S.: Order-reduction of parabolic pdes with time-varying domain using empirical eigenfunctions. AIChE J. 59(11), 4142 (2013)

    Article  Google Scholar 

  13. Ng, J., Aksikas, I., Dubljevic, S.: Control of parabolic pdes with time-varying spatial domain: Czochralski crystal growth process. Int. J. Control 86(9), 1467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ng, J., Dubljevic, S.: Optimal boundary control of a diffusion-convection-reaction pde model with time-dependent spatial domain: Czochralski crystal growth process. Chem. Eng. Sci. 67(1), 111 (2012)

    Article  Google Scholar 

  15. Fattorini, H.O., Murphy, T.: Optimal problems for nonlinear parabolic boundary control systems. SIAM J. Control. Optim. 32(6), 1577 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sidhu, H.S., Narasingam, A., Kwon, J.S.: 2018 Annual American Control Conference (ACC), pp. 6421–6426 (2018) 10.23919/ACC.2018.8430820

  17. Izadi, M., Abdollahi, J., Dubljevic, S.S.: Pde backstepping control of one-dimensional heat equation with time-varying domain. Automatica 54, 41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moura, S.J., Fathy, H.K.: Optimal boundary control of reaction-diffusion partial differential equations via weak variations. J. Dyn. Syst. Meas. Control. 135(3), (2013)

  19. Narasingam, A., Siddhamshetty, P., Kwon, J.: Sang-Il: temporal clustering for order reduction of nonlinear parabolic pde systems with time-dependent spatial domains: Application to a hydraulic fracturing process. AIChE J. 63(9), 3818 (2017)

    Article  Google Scholar 

  20. Friedman, A.: Partial Differential Equations of Parabolic Type, Prentice-Hall Inc (1964)

  21. Crank, J.:Free and Moving Boundary Problems, Clarendon Press (1987)

  22. Rodrigo, M.R., Thamwattana, N.: A unified analytical approach to fixed and moving boundary problems for the heat equation. Mathematics 9(7), (2021)

  23. Sadoun, N., Si-Ahmed, E.K., Colinet, P.: On the refined integral method for the one-phase stefan problem with time-dependent boundary conditions. Appl. Math. Model. 30(6), 531 (2006)

    Article  MATH  Google Scholar 

  24. Mitchell, S.L., Myers, T.G.: Application of standard and refined heat balance integral methods to one-dimensional stefan problems. SIAM Rev. 52(1), 57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Myers, T., Mitchell, S.: Application of the combined integral method to stefan problems. Appl. Math. Model. 35(9), 4281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Barrett, A., Fogelson, A.L., Griffith, B.E.: A hybrid semi-lagrangian cut cell method for advection-diffusion problems with robin boundary conditions in moving domains. J. Comput. Phys. 449, 110805 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ahmed, S.: Numerical solution of moving boundary problems using a new hybrid grid and meshless method. Eng. Anal. Boundary Elem. 103, 22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, Z., Lei, D., Han, Z., Zhang, P.: Boundary moving least square method for numerical evaluation of two-dimensional elastic membrane and plate dynamics problems. Eng. Anal. Boundary Elem. 108, 41 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mbehou, M., Daoussa Haggar, M., Tchepmo Djomegni, P.: Finite element method for nonlocal problems of kirchhoff-type in domains with moving boundary. Sci. Afr. 16, e01256 (2022)

    Google Scholar 

  30. Gasperini, D., Beise, H., Schroeder, U., Antoine, X., Geuzaine, C.: A frequency domain method for scattering problems with moving boundaries. Wave Motion 102, 102717 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marshall, G.: A front tracking method for one-dimensional moving boundary problems. SIAM J. Sci. Stat. Comput. 7(1), 252 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Armaou, A., Christofides, P.D.: Robust control of parabolic pde systems with time-dependent spatial domains. Automatica 37(1), 61 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ji, C., Du, R., Sun, Z.: Zhong: stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives. Int. J. Comput. Math. 95(1), 255 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the respected referees and the handling editor for their helpful comments, which directly contribute to the readability and reliability of the current paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Garshasbi.

Ethics declarations

Conflict of interest

There is no conflicting of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garshasbi, M., Sharafi, J. On the numerical solution of a class of variable coefficients parabolic moving boundary problems. J. Appl. Math. Comput. 69, 2509–2530 (2023). https://doi.org/10.1007/s12190-023-01844-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01844-0

Keywords

Mathematics Subject Classification

Navigation