Skip to main content
Log in

Local discontinuous Galerkin method for a hidden-memory variable order reaction–diffusion equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A high-order numerical method for a hidden-memory variable order reaction–diffusion equation is investigated in this paper. We propose the local discontinuous Galerkin method and a finite difference scheme to discrete the spatial and temporal variables, respectively. This paper provides an effective decomposition strategy for dealing with the monotonic loss of temporal discretization coefficients caused by changing order. The scheme is proved to be unconditionally stable and convergent with \({\textrm{O}}(\tau +{h^{k+1}})\), where \(\tau \) is the temporal step, h is the spatial step and k is the degree of the piecewise \(P^k\) polynomial. Some numerical examples are carried out to show the effectiveness of the scheme and confirm the theoretical convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Chen, Y., Li, Q., Huang, Y.: Immersed finite element method for time fractional diffusion problems with discontinuous coefficients. Comput. Math. Appl. 128, 121–129 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, Y., Lin, X., Huang, Y.: Error analysis of spectral approximation for space-time fractional optimal control problems with control and state constraints. J. Comput. Appl. Math. 413, 114293 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT Numer. Math. 55, 967–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feng, L., Zhuang, P., Liu, F., Turner, I.W.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257, 52–65 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Guo, L., Wang, Z., Vong, S.: Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems. Int. J. Comput. Math. 93, 1665–1682 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gu, X.M., Sun, H.W., Zhao, Y.L., Zheng, X.C.: An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order. Appl. Math. Lett. 120, 107270 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gu, X., Wu, S.: A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel. J. Comput. Phys. 417, 109576 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hanert, E., Piret, C.: A chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Sci. Comput. 36, A1797–A1812 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jia, J., Wang, H., Zheng, X.: Numerical analysis of a fast finite element method for a hidden-memory variable-order time-fractional diffusion equation. J. Sci. Comput. 91, 54 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, X., Qi, H.: Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative. J. Phys. A. 45, 485101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, Y.J., Ma, J.T.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, B., Lazarov, R.D., Zhou, Z.: An analysis of the \(L1\) Scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Li, Q., Chen, Y., Huang, Y., Wang, Y.: Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM. Math. Comput. Simulat. 185, 436–451 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, C., Wang, Z.: The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. Math. Comput. Simulat. 169, 51–73 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, M., Gu, X., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys. 24, 86–103 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Du, Y., Li, H., Wang, J.: A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn. 85, 2535–2548 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Y., Zhang, M., Li, H., Li, J.: High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73, 1298–1314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck Equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lorenzo, C.F., Hartley, T.T.: Variable Order and Distributed Order Fractional Operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pang, G.F., Chen, W., Fu, Z.J.: Space-fractional advection-dispersion equations by the kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Santamaria, F., Wils, S., Schutter, E.D., Augustine, G.J.: Anomalous diffusion in purkinjecell dendrites caused by spines. Neuron 52, 635–648 (2006)

    Article  Google Scholar 

  24. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wei, L., Li, W.: Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative. Math. Comput. Simul. 188, 280–290 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xia, Y., Yan, Y., Shu, C.W.: Application of the local discontinuous Galerkin method for the Allen Cahn/Cahn-Hilliard system, Commun. Comput. Phys. 5, 821–835 (2008)

    MATH  Google Scholar 

  27. Xu, Y., Shu, C.W.: A Local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Y., Chen, Y., Huang, Y.: Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations. Acta Math. Sci. 34B(3), 673–690 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, B., Jiang, X.Y., Wang, C.: Numerical algorithms to estimate relaxation parameters and caputo fractional derivative for a fractional thermal wave model in spherical composite medium. Appl. Math. Comput. 274, 106–118 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, H., Jiang, X., Yang, X.: A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem. Appl. Math. Comput. 320, 302–318 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, H., Liu, F., Jiang, X., Zeng, F., Turner, I.W.: A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput. Math. Appl. 76, 2460–2476 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhuang, P., Liu, F., Anh, V.V., Turner, I.W.: Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, Y., Zhang, Y., Liu, F., Turner, I.W., Tang, Y., Anh, V.V.: Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Comput. Math. Appl. 73, 1087–1099 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeng, F.H., Liu, F.W., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 41, 1522–1545 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng, X.: Logarithmic transformation between (variable-order) Caputo and Caputo-Hadamard fractional problems and applications. Appl. Math. Lett. 121, 107366 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Xindong Zhang for his valuable discussions that helped us improve the manuscript.

Funding

This work is supported by the State Key Program of National Natural Science Foundation of China (11931003) and National Natural Science Foundation of China (41974133), the Training Plan of Young Backbone Teachers in Henan University of Technology of China (21420049), and Scientific and Technological Research Projects in Henan Province (212102210612).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Yanping Chen.

Ethics declarations

Conflict of interest

The authors declare to have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Wang, H. & Chen, Y. Local discontinuous Galerkin method for a hidden-memory variable order reaction–diffusion equation. J. Appl. Math. Comput. 69, 2857–2872 (2023). https://doi.org/10.1007/s12190-023-01865-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01865-9

Keywords

Mathematics Subject Classification

Navigation