Skip to main content
Log in

An efficient numerical algorithm for solving nonlinear Volterra integral equations in the reproducing kernel space

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to approximate the solution of the nonlinear Volterra integral equation numerically in the reproducing kernel space. Consequently, in the study, combining Quasi-Newton’s method and the least-square method, we develop a new method for solving this kind of equation. This technique transforms the nonlinear Volterra integral equation into a linear algebraic system of equations, which can be solved by using the least-square method breezily. At the same time, to ensure the preciseness of the method, we strictly analyze the existence and uniqueness of \(\varepsilon \)-approximate solution and its convergence. Finally, we illustrate the accuracy and reliability of this method by giving some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babolian, E., Javadi, S., Moradi, E.: Error analysis of reproducing kernel Hilbert space method for solving functional integral equations. J. Comput. Appl. Math. 300, 300–300 (2016). https://doi.org/10.1016/j.cam.2016.01.008

    Article  MathSciNet  MATH  Google Scholar 

  2. Wazwaz, A. M.: Linear and Nonlinear Integral Equations: Methods and Applications. Higher Education Press, Beijing (2011). https://doi.org/10.1007/978-3-642-21449-3

    Book  MATH  Google Scholar 

  3. Frederick, B.: Asymptotic bounds for solutions to a system of damped integrodifferential equations of electromagnetic theory. J. Math. Anal. Appl. 73(2), 524–542 (1980). https://doi.org/10.1016/0022-247X(80)90297-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Smetanin, B.I.: On an integral equation for axially-symmetric problems in the case of an elastic body containing an inclusion. J. Appl. Math. Mech. 55(3), 371–375 (1991). https://doi.org/10.1016/0021-8928(91)90041-R

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, X., Li, Y., Jiang, J., Dong, C., Du, S., Tan, L.: Sparse modeling of nonlinear secondary path for nonlinear active noise control. IEEE Trans. Instrum. Meas. 67(3), 482–496 (2018). https://doi.org/10.1109/tim.2017.2781992

    Article  Google Scholar 

  6. Wang, Y., Tang, S., Gu, X.: Parameter estimation for nonlinear Volterra systems by using the multi-innovation identification theory and tensor decomposition. J. Frankl. Inst. 359(2), 1782–1802 (2022). https://doi.org/10.1016/J.JFRANKLIN.2021.11.015

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, P., Fua, W., Wang, K., Xiong, D.: A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting. Appl. Energy 307(1), 118191 (2022). https://doi.org/10.1016/j.apenergy.2021.118191

    Article  Google Scholar 

  8. Okrasinski, W.: Nontrivial solutions to nonlinear Volterra integral equations. SIAM J. Math. Anal. 22, 1007–1015 (2006). https://doi.org/10.1137/0522065

    Article  MathSciNet  MATH  Google Scholar 

  9. Majid, W.A.: A First Course in Integral Equations. World Scientific (2015). https://doi.org/10.1142/9570

    Book  MATH  Google Scholar 

  10. Ozdemir, I., Umitakan, Bekirlhan: On the existence of the solutions for some nonlinear Volterra integral equations. Abstr. Appl. Anal. 2013, 1–5 (2013). https://doi.org/10.1155/2013/698234

  11. Santosh, K.: Fixed points and continuity for a pair of contractive maps with application to nonlinear Volterra integral equations. J. Funct. Spaces (2021). https://doi.org/10.1155/2021/9982217

    Article  MathSciNet  MATH  Google Scholar 

  12. Manochehr, K.: Triangular functions for numerical solution of the nonlinear Volterra integral equations. J. Appl. Math. Comput. 68, 1979–2002 (2022). https://doi.org/10.1007/S12190-021-01603-Z

    Article  MathSciNet  MATH  Google Scholar 

  13. Yao, G., Tao, D., Zhang, C.: A hybrid spectral method for the nonlinear Volterra integral equations with weakly singular kernel and vanishing delays. Appl. Math. Comput. (2021). https://doi.org/10.1016/J.AMC.2021.126780

    Article  Google Scholar 

  14. Song, H., Yang, Z., Xiao, Y.: Iterated collocation methods for nonlinear third-kind Volterra integral equations with proportional delays. Comput. Appl. Math. 41(4), 3841–3855 (2022). https://doi.org/10.1007/S40314-022-01775-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Zaky, M.A., Ameen, I.G.: A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions. Appl. Math. Lett. 47, 2623–2631 (2021). https://doi.org/10.1007/s00366-020-00953-9

    Article  Google Scholar 

  16. Tao, S., Qing, W., Yu, G.: A multistep Legendre–Gauss spectral collocation method for nonlinear Volterra integral equations. SIAM J. Numer. Anal. 52(4), 1953–1980 (2014). https://doi.org/10.1137/130915200

    Article  MathSciNet  MATH  Google Scholar 

  17. Assari, P., Dehghan, M.: The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions. Appl. Numer. Math. 131, 140–157 (2018). https://doi.org/10.1016/j.apnum.2018.05.001

    Article  MathSciNet  MATH  Google Scholar 

  18. Laib, H., Boulmerka, A., Bellour, A., Birem, F.: Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method. J. Comput. Appl. Math. 417, 114537 (2023). https://doi.org/10.1016/j.cam.2022.114537

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahdy, A.M.S., Shokry, D., Lotfy, K.: Chelyshkov polynomials strategy for solving 2-dimensional nonlinear Volterra integral equations of the first kind. Comput. Appl. Math. (2022). https://doi.org/10.1007/S40314-022-01966-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Raziyeh, D., Khadijeh, N.: Numerical solution of nonlinear weakly singular Volterra integral equations of the first kind: an HP-version collocation approach. Appl. Numer. Math. 161, 111–136 (2021). https://doi.org/10.1016/j.apnum.2020.10.030

    Article  MathSciNet  MATH  Google Scholar 

  21. Tohidi, E., Samadi, O.R.N.: Optimal control of nonlinear Volterra integral equations via Legendre polynomials. IMA J. Math. Control. Inf. 30(1), 67–83 (2013). https://doi.org/10.1093/imamci/dns014

    Article  MathSciNet  MATH  Google Scholar 

  22. Mirzaee, F., Hoseini, S.F.: Hybrid functions of Bernstein polynomials and block-pulse functions for solving optimal control of the nonlinear Volterra integral equations. Indag. Math. 273(3), 835–849 (2016). https://doi.org/10.1016/j.indag.2016.03.002

    Article  MathSciNet  MATH  Google Scholar 

  23. Xie, J., Huang, Q., Zhao, F.: Numerical solution of nonlinear Volterra Fredholm Hammerstein integral equations in two-dimensional spaces based on block pulse functions. 317, 565–572 (2017). https://doi.org/10.1016/j.cam.2016.12.028

  24. Zhang, C., Liu, Z., Tao, S.C.D.: New spectral element method for Volterra integral equations with weakly singular kernel. J. Comput. Appl. Math. (2022). https://doi.org/10.1016/J.CAM.2021.113902

    Article  MathSciNet  MATH  Google Scholar 

  25. Khidir, A.A.: A new numerical technique for solving Volterra integral equations using Chebyshev spectral method. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/9230714

    Article  Google Scholar 

  26. Zhang, J., Hou, J., Niu, J., Xie, R., Dai, X.: A high order approach for nonlinear Volterra–Hammerstein integral equations. AIMS Mathematics 7, 1460–1469 (2021). https://doi.org/10.3934/math.2022086

    Article  MathSciNet  Google Scholar 

  27. Hassan, J., Majeed, H., Arif, G.E.: System of non-linear Volterra integral equations in a direct-sum of Hilbert spaces. J. Nigerian Soc. Phys. Sci. 4, 107751 (2022). https://doi.org/10.1016/j.aml.2021.107751

    Article  Google Scholar 

  28. Parand, K., Razzaghi, M., Sahleh, R., Jani, M.: Least squares support vector regression for solving Volterra integral equations. Eng. Comput. 2020, 1–8 (2020). https://doi.org/10.1007/s00366-020-01186-6

    Article  Google Scholar 

  29. Assari, P., Dehghan, M.: A meshless local discrete Galerkin (MLDG) scheme for numerically solving two-dimensional nonlinear Volterra integral equations. Appl. Math. Comput. 350, 249–265 (2019). https://doi.org/10.1016/j.amc.2019.01.013

    Article  MathSciNet  MATH  Google Scholar 

  30. Cardone, A., Conte, D., D’Ambrosio, R., Paternoster, B.: Collocation methods for Volterra integral and integro-differential equations: a review. Nonlinear Differ. Equ. Appl. 7(3), 45–45 (2018). https://doi.org/10.3390/axioms7030045

    Article  MATH  Google Scholar 

  31. Lei, Y., Qing, N., Yun, D., Shuo, H.: A-pinn: auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. Appl. Math. Lett. (2022). https://doi.org/10.1016/J.JCP.2022.111260

    Article  MATH  Google Scholar 

  32. Cui, M., Du, H.: Representation of exact solution for the nonlinear Volterra Fredholm integral equations. Appl. Math. Comput. 182(2), 1795–1802 (2006). https://doi.org/10.1016/j.amc.2006.06.016

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, Y., Niu, J., Zhang, J., Ning, S.Y.: A reproducing kernel method for nonlinear c-q-fractional IVPs. Appl. Math. Lett. 125, 107751 (2021). https://doi.org/10.1016/j.aml.2021.107751

    Article  MathSciNet  MATH  Google Scholar 

  34. Hou, J., Niu, J., Ngolo, W.: A new numerical method to solve nonlinear Volterra–Fredholm integro-differential equations. Math. Model. Anal. 26(3), 469–478 (2021). https://doi.org/10.3846/mma.2021.12923

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, M., Niu, J., Tohidi, E., Hou, J., Jiang, D.: A new least-squares-based reproducing kernel method for solving regular and weakly singular Volterra–Fredholm integral equations with smooth and nonsmooth solutions. Math. Methods Appl. Sci. 44(13), 10772–10784 (2021). https://doi.org/10.1002/mma.7444

    Article  MathSciNet  MATH  Google Scholar 

  36. Al-Smadi, M., Arqub, O.A.: Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019). https://doi.org/10.1016/j.amc.2018.09.020

    Article  MathSciNet  MATH  Google Scholar 

  37. Al-Smadi, M., Arqub, O.A., Shawagfeh, N., Momani, S.: Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl. Math. Comput. 291, 137–148 (2016). https://doi.org/10.1016/j.amc.2016.06.002

    Article  MathSciNet  MATH  Google Scholar 

  38. Momani, S., Djeddi, N., Al-Smadi, M., Al-Omari, S.: Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method. Appl. Numer. Math. 170, 418–434 (2021). https://doi.org/10.1016/j.apnum.2021.08.005

    Article  MathSciNet  MATH  Google Scholar 

  39. Al-Smadi, M., Dutta, H., Hasan, S., Momani, S.: On numerical approximation of Atangana–Baleanu–Caputo fractional integro-differential equations under uncertainty in Hilbert space. Math. Model. Nat. Phenom. 16, 1–26 (2021). https://doi.org/10.1051/mmnp/2021030

    Article  MathSciNet  MATH  Google Scholar 

  40. Razzaghi, M., Ordokhani, Y.: Solution of nonlinear Volterra–Hammerstein integral equations via rationalized Haar functions. Math. Probl. Eng. 7(2), 205–219 (2001). https://doi.org/10.1155/s1024123x01001612

    Article  MathSciNet  MATH  Google Scholar 

  41. Babolian, E., Shahsavaran, A.: Numerical solution of nonlinear Fredholm and Volterra integral equations of the second kind using Haar wavelets and collocation method. J. Sci. (Kharazmi Univ.) 7(3), 213–222 (2007)

    Google Scholar 

  42. Mirzaee, F., Hoseini, A.A.: Numerical solution of nonlinear Volterra–Fredholm integral equations using hybrid of block-pulse functions and Taylor series. J. Eng. 52(3), 551–555 (2013). https://doi.org/10.1016/j.aej.2013.02.004

    Article  Google Scholar 

  43. Javan, S.F., Abbasbandy, S., Araghi, M.A.F.: Application of reproducing kernel Hilbert space method for solving a class of nonlinear integral equations. Math. Probl. Eng. 2017(1), 1–10 (2017). https://doi.org/10.1155/2017/7498136

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, M., Niu, J., Lin, Y.: An efficient method for fractional nonlinear differential equations by quasi newton’s method and simplified reproducing kernel method. AIMS Mathematics 41(1), 5–14 (2018). https://doi.org/10.1002/mma.4590

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, X., Liu, X.: A hybrid kernel functions collocation approach for boundary value problems with c-a puto fractional derivative. Appl. Math. Lett.142, 108636 (2023). https://doi.org/10.1016/j.aml.2023.108636

  46. Geng, F., Wu, X.: Reproducing kernel-based piecewise methods for efficiently solving oscillatory systems of second-order initial value problems. Calcolo 60 (2023). https://doi.org/10.1007/S10092-023-00516-6

  47. Jia, Y., Xu, M., Lin, Y., Jiang, D.: An efficient technique based on least-squares method for fractional integro-differential equations. Alex. Eng. J. 64, 97–105 (2023). https://doi.org/10.1016/j.aej.2022.08.033

  48. Xu, M., Zhang, L., Tohidi, E.: An efficient method based on least-squares technique for interface problems. Appl. Math. Lett. 136, 108475 (2023). https://doi.org/10.1016/j.aml.2022.108475

  49. Xu, M., Zhang, L., Tohidi, E.: A fourth-order least-squares based reproducing kernel method for dimensional elliptic interface problems. Appl. Numer. Math. 162, 124–136 (2021). https://doi.org/10.1016/j.apnum.2020.12.015

  50. Xu, M., Tohidi, E., Niu, J., Fang, Y.: A new reproducing kernel-based collocation method with optimal convergence rate for some classes of bvps. Appl. Math. and Comput. 432, 127343 (2022). https://doi.org/10.1016/j.amc.2022.127343

  51. Xu, M., Lin, R., Zou, Q.: A c0 linear finite element method for a second-order elliptic equation in non-divergence form with cordes coefficients. Numer. Methods for Partial Differ. Equ. 39, 2244–2269 (2023). https://doi.org/10.1002/num.22965

  52. Xu, M., Shi, C.: A hessian recovery-based finite difference method for bihar-monic problems. Appl. Math. Lett. 137, 108503 (2023). https://doi.org/10.1016/j.aml.2022.108503

  53. Xu, M., Zou, Q.: A hessian recovery based linear finite element method for molecular beam epitaxy growth model with slope selection. Adv. in Appl. Math. and Mech. 1–23 (2023). https://doi.org/10.4208/aamm.OA-2021-0193

Download references

Acknowledgements

This study was supported by National Natural Science Funds of China by Grant Number 12101164; Harbin Normal University Postgraduate Innovative Research Project by Grant Number HSDSSCX2022-40; Doctoral Foundation of Harbin Normal University by Grant number XKB202011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Niu or Yanxin Xu.

Ethics declarations

Conflict of interest

The authors declare that there is no possible conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Niu, J. & Xu, Y. An efficient numerical algorithm for solving nonlinear Volterra integral equations in the reproducing kernel space. J. Appl. Math. Comput. 69, 3131–3149 (2023). https://doi.org/10.1007/s12190-023-01874-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01874-8

Keywords

Mathematics Subject Classification

Navigation