Abstract
Fractional calculus is recognized as a technique with many uses, along with studying biological systems. This article frames the mathematical model for the nonlinear fractional differential equations system involving caputo fractional derivative for Chemo-Radiation therapy of a brain tumor. The system is investigated for the model’s stability analysis, existence, and uniqueness. The impact of a fractional differential equation on the analysis of the described model is examined by utilizing Caputo Fractional operator. Stability analysis is discussed under three categories: without any therapy, with chemotherapy, and with chemo-radiotherapy treatment. However, numerical simulations have been utilized to investigate the model on fractional order derivative. The graphs have been displayed for the three treatments using various values for the fractional order. This analysis suggests that combination therapy could lead to tremendous success in treating gliomas.









Similar content being viewed by others
References
Cooper, G.M. (ed.): The Development and Causes of Cancer. The Cell: A Molecular Approach. Sinauer Associates, Sunderland (2000)
Peiffer, J., Kleihues, P., Scherer, H.J.: Pioneer in glioma research. Brain Pathol. 9, 241–245 (1999). https://doi.org/10.1111/j.1750-3639.1999.tb00222.x
Forst, D.A., et al.: Low-grade gliomas. Oncologist 19, 403–413 (2014). https://doi.org/10.1634/theoncologist.2013-0345
Bondiau, P.Y., et al.: Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging. Phys. Med. Biol. 53, 879–893 (2008). https://doi.org/10.1088/0031-9155/53/4/004
Harpold, H.L.P., Alvord, E.C., Swanson, K.R.: The evolution of mathematical modeling of glioma proliferation and invasion. J. Neuropathol. Exp. Neurol. 66, 1–9 (2007). https://doi.org/10.1097/nen.0b013e31802d9000
Badoua, M., et al.: Oedema-based model for diffuse low-grade gliomas: application to clinical cases under radiotherapy. Cell Prolif. 47, 369–380 (2014). https://doi.org/10.1111/cpr.12114
Shua, Y., Huanga, J., Donga, Y., Takeuchib, Y.: Mathematical modeling and bifurcation analysis of pro and anti-tumor macrophages. Appl. Math. Model. 88, 758–773 (2020). https://doi.org/10.1016/j.apm.2020.06.042
Panga, L., Liub, S., Zhangc, X., Tian, T.: Mathematical modeling and analysis of tumor-volume variation during radiotherapy. Appl. Math. Model. 89, 1074–1089 (2021). https://doi.org/10.1016/j.apm.2020.07.028
Duan, W.L., Fang, H., Zeng, C.: The stability analysis of tumor-immune responses to chemotherapy system with Gaussian white noises. Chaos Solitons Fract. 127, 96–102 (2019). https://doi.org/10.1016/j.chaos.2019.06.030
Rockne, R., Alvord, E.C., Rockhill, J.K., Swanson, K.R.: A mathematical model for brain tumor response to radiation therapy. J. Math. Biol. 58, 561–578 (2009). https://doi.org/10.1007/s00285-008-0219-6
Pinho, S., Freedman, S.H., Nani, F.: Chemotherapy model for the treatment of cancer with metastasis. Math. Comput. Model. 36, 77–803 (2002). https://doi.org/10.1016/S0895-7177(02)00227-3
Ledzewicz, U., Naghnaeian, M., Schättleri, H.: Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. Math. Comput. Model. 64, 557–77 (2012). https://doi.org/10.1007/s00285-011-0424-6
Ghaffari, A., Bahmaie, B., Nazari, M.: A mixed radiotherapy and chemotherapy model for treatment of cancer with metastasis. Math. Comput. Model. 39, 4603–17 (2016). https://doi.org/10.1002/mma.3887
Liuand, Z., Yang, C., Nazari, M.: A mathematical model of cancer treatment by radiotherapy followed by chemotherapy. Math. Comput. Simul. 124, 1–15 (2016). https://doi.org/10.1016/j.matcom.2015.12.007
Barazzuol, L., Burnet, N.G., Jones, B., Jefferies, S.J., Kirby, N.F.: A mathematical model of brain tumour response to radiotherapy and chemotherapy considering radiobiological aspects. J. Theor. Boil. 262, 553–65 (2010). https://doi.org/10.1016/j.jtbi.2009.10.021
Pinho, S.T.R., Barcelar, F.S., Andrade, R.F.S., Freedman, H.I.: A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumors by chemotherapy. Nonlinear Anal. Real World Appl. 14, 815–828 (2013). https://doi.org/10.1016/j.nonrwa.2012.07.034
Spratt, J.S., Spratt, T.L.: Rates of growth of pulmonary metastases and host survival. Ann. Surg. 159, 161–171 (1964). https://doi.org/10.1097/00000658-196402000-00001
Borges, F.S., et al.: Model for tumor growth with treatment by continuous and pulsed chemotherapy. Biosystems 116, 43–48 (2014). https://doi.org/10.1016/j.biosystems.2013.12.001
Iarosz, K.C., et al.: Mathematical model of brain tumor with glia-neuron interactions and chemotherapy treatment. J. Theor. Biol. 368, 113–121 (2015). https://doi.org/10.1016/j.jtbi.2015.01.006
Nass, T., Efferth, T.: Drug targets and resistance mechanisms in myeloma. Cancer Drug Resist. 1, 87–117 (2018). https://doi.org/10.20517/cdr.2018.04
Sun, X., Bao, J., Shoa, Y.: Mathematical modeling of therapy-induced cancer drug resistance: connecting cancer mechanisms to population survival rates. Sci. Rep. 6, 22498 (2016). https://doi.org/10.1038/srep22498
Ionescu, C., Lopes, A., Copot, D., Machado, J.H.T., Bates, J.H.T.: The role of fractional calculus in modelling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017). https://doi.org/10.1016/j.cnsns.2017.04.001
Tarasov, V.E.: Review of some promising fractional physical models. Int. J. Mod. Phys. B 27(09), 1330005 (2013). https://doi.org/10.1142/S0217979213300053
Hassani, H., Avazzadeh, Z., Tenreiro Machado, J.A., Agarwal, P., Bakhtiar, M.: Optimal solution of a fractional HIV/AIDS epidemic mathematical model. J. Comput. Biol. 29(3), 276–291 (2022). https://doi.org/10.1089/cmb.2021.0253
Singh, R., Rehman, A.U., Masud, M., Alhumyani, H.A., Mahajan, S., Pandit, A.K., Agarwal, P.: Fractional order modeling and analysis of dynamics of stem cell differentiation in complex network. AIMS Math. 7(4), 5175–5198 (2022). https://doi.org/10.3934/math.2022289
Wang, F.Z., Khan, M.N., Ahmad, I., Ahmad, H., Abu-Zinadah, H., Chu, Y.M.: Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals 30(2), 22400051 (2022). https://doi.org/10.1142/S0218348X22400515
Rashid, S., Sultana, S., Karaca, Y., Khalid, A., Chu, Y.M.: Some further extensions considering discrete proportional fractional operators. Fractals 30(1), 2240026 (2022). https://doi.org/10.1142/S0218348X22400266
Ganji, R.M., Jafari, H., Moshokoa, S.P., Nkomo, N.S.: A mathematical model and numerical solution for brain tumor derived using fractional operator. Results Phys. 28, 104671 (2021). https://doi.org/10.1016/j.rinp.2021.104671
Ghaziani, R.K., Alidousti, J., Eshkaftaki, A.B.: Stability and dynamics of a fractional order Leslie–Gower Prey–Predator model. Appl Math Modell. 40, 2075–86 (2019). https://doi.org/10.1016/j.apm.2015.09.014
Majee, S., Adak, S., Jana, S., et al.: Complex dynamics of a fractional-order sir system in the context of COVID-19. J. Appl. Math. Comput. 68, 4051–4074 (2022). https://doi.org/10.1007/s12190-021-01681-z
Avazzadeh, Z., Hassani, H., Ebadi, M.J., et al.: Optimal approximation of fractional order brain tumor model using generalized Laguerre polynomials. Iran J. Sci. 47, 501–513 (2023). https://doi.org/10.1007/s40995-022-01388-1
Maayah, B., Arqub, O.A., Alnabulsi, S., Alsulami, H.: Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme. Chin. J. Phys. 80, 463–483 (2022). https://doi.org/10.1016/j.cjph.2022.10.002
Abu Arqub, O., Alsulami, H., Alhodaly, M.: Numerical Hilbert space solution of fractional Sobolev equation in (1+1)-dimensional space. Math. Sci. 16, 1–12 (2022). https://doi.org/10.1007/s40096-022-00495-9
Arqub, O.A., Maayah, B.: Adaptive the Dirichlet model of mobile/immobile advection/dispersion in a time-fractional sense with the reproducing kernel computational approach: formulations and approximations. Int. J. Mod. Phys. B 37(18), 2350179 (2023). https://doi.org/10.1142/S0217979223501795
Maayah, B., Moussaoui, A., Bushnaq, S., Arqub, A.: The multistep Laplace optimized decomposition method for solving fractional-order coronavirus disease model (COVID-19) via the Caputo fractional approach. Demonstr. Math. 55(1), 963–977 (2022). https://doi.org/10.1515/dema-2022-0183
Maayah, B., Moussaoui, A., Bushnaq, S., Arqub, A.: The extended Laplace transform method for mathematical analysis of the Thomas–Fermi equation. Chin. J. Phys. 55(6), 2548–2558 (2017). https://doi.org/10.1016/j.cjph.2017.10.001
Ali, R., Ghosh, U.N., Mandi, L., et al.: Application of Adomian decomposition method to study collision effect in dusty plasma in the presence of polarization force. Indian J. Phys. 97, 2209–2216 (2023). https://doi.org/10.1007/s12648-023-02588-0
Fatoorehchi, H., Djilali, S.: Stability analysis of linear time-invariant dynamic systems using the matrix sign function and the Adomian decomposition method. Int. J. Dyn. Control. 11, 593–604 (2023). https://doi.org/10.1007/s40435-022-00989-3
Fatoorehchi, H., Rach, R., Sakhaeinia, H.: Explicit Frost–Kalkwarf type equations for calculation of vapour pressure of liquids from triple to critical point by the Adomian decomposition method. Can. J. Chem. Eng. 95, 2199–2208 (2017). https://doi.org/10.1002/cjce.22853
Fatoorehchi, H., Alidadi, M., Rach, R., Shojaeian, A.: Theoretical and experimental investigation of thermal dynamics of Steinhart–Hart negative temperature coefficient thermistors. ASME J. Heat Transf. 141(7), 072003 (2019). https://doi.org/10.1115/1.4043676
Duan, N., Sun, K.: Power system simulation using the multistage Adomian decomposition method. IEEE Trans. Power Syst. 32(1), 430–441 (2017). https://doi.org/10.1109/TPWRS.2016.2551688
Hasan, B., Mahmut, E., Vedat, A., Roza, H.B.: Numerical solution of a viscous incompressible flow problem through an orifice by Adomian decomposition method, applied mathematics and computation. Appl. Math. Comput. 153(3), 733–741 (2004). https://doi.org/10.1016/S0096-3003(03)00667-2
Jose, T., Kun, T., Antonio, M.B., Celso, G.: Mathematical model of brain tumor growth with drug resistance. Commun. Nonlinear Sci. Numer. Simul. 103, 106013 (2021). https://doi.org/10.1016/j.cnsns.2021.106013
Simbawa, E., Al-Johani, N., Al-Tuwairqi, S.: Modeling the spatiotemporal dynamics of oncolytic viruses and radiotherapy as a treatment for cancer. Comput. Math. Methods Med. 358, 3642654 (2020). https://doi.org/10.1155/2020/3642654
El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional- order logistic equation. Appl. Math. Lett. 20, 817–823 (2007). https://doi.org/10.1016/j.aml.2006.08.013
Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forsch. Wiss. Rechn. 1999, 57–71 (1998)
Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5(1), 1–6 (1997)
Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2), 16 (2018). https://doi.org/10.3390/math6020016
Li, C., Tao, C.: On the fractional Adams method. Comput. Math. Appl. 58(8), 1573–1588 (2009). https://doi.org/10.1016/j.camwa.2009.07.050
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the manuscript. All authors read and approved the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sujitha, S., Jayakumar, T. & Maheskumar, D. Fractional model of brain tumor with chemo-radiotherapy treatment. J. Appl. Math. Comput. 69, 3793–3818 (2023). https://doi.org/10.1007/s12190-023-01901-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-023-01901-8