Skip to main content
Log in

A coupled quaternion matrix equations with applications

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Linear coupled matrix equations are implemented in various domains, including stability analysis of control systems and robust control. The solvability requirements and the solution of the linear coupled system were established in this study. Additionally, as applications of the system, we investigate the linear coupled quaternion system to be compatible and deduce the solvability criteria for matrix equations, including Hermicity. An algorithm and an example are given to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi, L., Luo, Z.Y., Wang, Q.W., Zhang, X.Z.: Quaternion matrix optimization: motivation and analysis. J. Optim. Theory Appl. 193(1–3), 621–648 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Took, C.C., Mandic, D.P.: Augmented second-order statistics of quaternion random signals. Signal Process. 91, 214–224 (2011)

    MATH  Google Scholar 

  3. Jia, Z.G., Ling, S.T., Zhao, M.X.: Color two-dimensional principal component analysis for face recognition based on quaternion model. In: Proceedings of the International Conference on Intelligent Computing: Intelligent Computing Theories and Application. Liverpool, UK, 7-10 August (2017) pp. 177-189

  4. He, Z.H., Navasca, C., Wang, X.X.: Decomposition for a quaternion tensor triplet with applications. Adv. Appl. Clifford Algebras 32(1), 9 (2022)

    MathSciNet  MATH  Google Scholar 

  5. He, Z.H., Qin, W.L., Wang, X.X.: Some applications of a decomposition for five quaternion matrices in control system and color image processing. Comput. Appl. Math. 40(6), 205 (2021)

    MathSciNet  MATH  Google Scholar 

  6. He, Z.H., Chen, C., Wang, X.X.: A simultaneous decomposition for three quaternion tensors with applications in color video signal processing. Anal. Appl. 19(3), 529–549 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Yu, S.W., He, Z.H., Qi, T.C., Wang, X.X.: The equivalence canonical form of five quaternion matrices with applications to imaging and Sylvester-type equations. J. Comput. Appl. Math. 393, 113494 (2021)

    MathSciNet  MATH  Google Scholar 

  8. He, Z.H., Ng Michael, K., Zeng, C.: Generalized singular value decompositions for tensors and their applications. Numer. Math-Theory Me. 14(3), 692–713 (2021)

    MathSciNet  MATH  Google Scholar 

  9. He, Z.H., Wang, Q.W., Zhang, Y.: A simultaneous decomposition for seven matrices with applications. J. Comput. Appl. Math. 349, 93–113 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Castelan, E.B., da Silva, V.G.: On the solution of a Sylvester equation appearing in descriptor systems control theory. Syst. Control Lett. 54, 109–117 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, Y.N., Jiang, D.C., Wang, J.: A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans. Neural Netw. 13, 1053–1063 (2002)

    Google Scholar 

  12. Syrmos, V.L., Lewis, F.L.: Output feedback eigenstructure assignment using two Sylvester equations. IEEE Trans. Autom. Control 38, 495–499 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Dmytryshyn, A., Kȧgström, B.: Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Math. Anal. 36(2), 580–593 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Kyrchei, I.: Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear Algebra Appl. 438, 136–152 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Kyrchei, I.: Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations. Appl. Math. Comput. 238, 193–207 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Liu, L.S., Wang, Q.W., Mehany, M.S.: A Sylvester-type matrix equation over the Hamilton quaternions with an application. Mathematics 10, 1758 (2022)

    Google Scholar 

  17. Liu, X., Zhang, Y.: Consistency of split quaternion matrix equations \(AX^{\star }-XB=CY+D\) and \(X-AX^{\star }B=CY+D\). Adv. Appl. Clifford Algebras 64, 1–20 (2019)

    MATH  Google Scholar 

  18. Ben-Israel, A., Greville, T.N.E.: Generalized Inverse: Theory and Applications. John Wiley and Sons, New York, NY, USA (1974)

    MATH  Google Scholar 

  19. Peng, Z.Y.: The centro-symmetric solutions of linear matrix equation \(AXB=C\) and its optimal approximation. Chinese J. Eng. Math. 20(6), 60–64 (2003)

    Google Scholar 

  20. Huang, G.X., Yin, F., Guo, K.: An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation \(AXB=C\). J. Comput. Appl. Math. 212(2), 231–244 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Jia, Z.G., Ng, M.K., Song, G.J.: Robust quaternion matrix completion with applications to image inpainting. Numer. Linear Algebra Appl. 26, e2245 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Jia, Z.G., Wei, M.S., Zhao, M.X., Chen, Y.: A new real structure-preserving quaternion QR algorithm. J. Comput. Appl. Math. 343, 26–48 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Rodman, L.: Topics in Quaternion Linear Algebra, Princeton University Press: Princeton, NJ, USA (2014)

  24. Yu, S.W., He, Z.H., Qi, T.C., Wang, X.X.: The equivalence canonical form of five quaternion matrices with applications to imaging and Sylvester-type equations. J. Comput. Appl. Math. 393, 113494 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Yuan, S.F., Wang, Q.W., Duan, X.F.: On solutions of the quaternion matrix equation \(AX=B\) and their applications in color image restoration. J. Comput. Appl. Math. 221, 10–20 (2013)

    MathSciNet  MATH  Google Scholar 

  26. He, Z.H., Wang, Q.W.: A real quaternion matrix equation with with applications. Linear Multilinear Algebra 61, 725–740 (2013)

    MathSciNet  MATH  Google Scholar 

  27. He, Z.H., Wang, Q.W., Zhang, Y.: A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica 87, 25–31 (2018)

    MathSciNet  MATH  Google Scholar 

  28. He, Z.H., Wang, Q.W., Zhang, Y.: Simultaneous decomposition of quaternion matrices involving \(\eta \)-Hermicity with applications. Appl. Math. Comput. 298, 13–35 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Chen, X.Y., Wang, Q.W.: The \(\eta \)-(anti-)Hermitian solution to a constrained Sylvester-type generalized commutative quaternion matrix equation. Banach J. Math. Anal. (2023). https://doi.org/10.1007/s43037-023-00262-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, X.L., Wang, Q.W.: The consistency and the general common solution to some quaternion matrix equations. Ann. Funct. Anal. (2023). https://doi.org/10.1007/s43034-023-00276-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, L.S., Wang, Q.W.: The reducible solution to a system of matrix equations over the Hamilton quaternion algebra. Filomat 37(9), 2731–42 (2023). https://doi.org/10.2298/FIL2309731L

    Article  MathSciNet  Google Scholar 

  32. He, Z.H., Wang, M.: A quaternion matrix equation with two different restrictions. Adv. Appl. Clifford Algebras 31, 25 (2021)

    MathSciNet  MATH  Google Scholar 

  33. He, Z.H., Agudelo, O.M., Wang, Q.W., De Moor, B.: Two-sided coupled generalized sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices. Linear Algebra Appl. 496, 549–593 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Liu, L.S., Wang, Q.W., Chen, J.F., Xie, Y.Z.: An exact solution to a quaternion matrix equation with an application. Symmetry 14(2), 375 (2022)

    Google Scholar 

  35. Wang, R.N., Wang, Q.W., Liu, L.S.: Solving a system of Sylvester-like quaternion matrix equations. Symmetry 14, 1056 (2022)

    Google Scholar 

  36. Wang, Q.W., Rehman, A., He, Z.H., Zhang, Y.: Constraint generalized Sylvester matrix equations. Automatica 69, 60–64 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Wang, Q.W., He, Z.H.: Systems of coupled generalized Sylvester matrix equations. Automatica 50, 2840–2844 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Wang, Q.W., He, Z.H.: Solvability conditions and general solution for mixed Sylvester equations. Automatica 49, 2713–2719 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Wang, Q.W., He, Z.H., Zhang, Y.: Constrained two-side coupled Sylvester-type quaternion matrix equations. Automatica 101, 207–213 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Xu, Y.F., Wang, Q.W., Liu, L.S., Mehany, M.S.: A constrained system of matrix equations. Comp. Appl. Math. 41, 166 (2022)

    MathSciNet  MATH  Google Scholar 

  41. He, Z.H.: Some new results on a system of Sylvester-type quaternion matrix equations. Linear Multilinear Algebra 69(16), 3069–3091 (2021)

    MathSciNet  MATH  Google Scholar 

  42. He, Z.H., Wang, M.: Solvability conditions and general solutions to some quaternion matrix equations. Math. Method. Appl. Sci. 44(18), 14274–14291 (2021)

    MathSciNet  MATH  Google Scholar 

  43. He, Z.H., Wang, Q.W., Zhang, Y.: A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica 87, 25–31 (2018)

    MathSciNet  MATH  Google Scholar 

  44. He, Z.H., Liu, J.Z., Tam, T.Y.: The general \(\phi \)-hermitian solution to mixed pairs of quaternion matrix Sylvester equations. Electron. J. Linear Al. 32, 475–499 (2017)

    MathSciNet  MATH  Google Scholar 

  45. He, Z.H., Wang, M.: A quaternion matrix equation with two different restrictions. Adv. Appl. Clifford Algebras 31, 25 (2021)

    MathSciNet  MATH  Google Scholar 

  46. He, Z.H., Wang, Q.W.: The general solutions to some systems of matrix equations. Linear Multilinear Algebra 63, 2017–2032 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Kyrchei, I.: Cramer’s rules for Sylvester quaternion matrix equation and its special cases. Adv. Appl. Clifford Algebras 28(5), 90 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Kyrchei, I.: Cramer’s rules of \(\eta \)-(skew-) Hermitian solutions to the quaternion Sylvester-type matrix equations. Adv. Appl. Clifford Algebras 29(3), 56 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Xie, M.Y., Wang, Q.W.: The reducible solution to a quaternion tensor equation. Front. Math. China 15(5), 1047–1070 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Chen, T., Francis, B.A.: Optimal Sampled-data Control Systems. Springer, London (1995)

    MATH  Google Scholar 

  51. Khatri, C.G., Mitra, S.K.: Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math. 31, 579–585 (1976)

    MathSciNet  MATH  Google Scholar 

  52. Xu, Q.X.: Common hermitian and positive solutions to the adjointable operator equations \(AX=C, XB=D\). Linear Algebra Appl. 429, 1–11 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Größ, J.: A note on the general Hermitian solution to \(AXA^{*}=B\). Bull. Malays. Math. Soc. 21, 57–62 (1998)

    MathSciNet  MATH  Google Scholar 

  54. Größ, J.: Nonnegative-definite and positive-definite solutions to the matrix equation \(AXA^{*}=B\) revisited. Linear Algebra Appl. 321, 123–129 (2000)

    MathSciNet  MATH  Google Scholar 

  55. Cvetkovićć-IIić, D.S., Dajić, A., Koliha, J.J.: Positive and real-positive solutions to the equation \(axa^{*}=c\) in \(C^{*}\)-algebras. Linear Multilinear Algebra 55, 535–543 (2007)

    MathSciNet  MATH  Google Scholar 

  56. Marsaglia, G., Styan, G.P.: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2, 269–292 (1974)

    MathSciNet  MATH  Google Scholar 

  57. Baksalary, J.K., Kala, R.: The matrix equations \(AX-YB=C\). Linear Algebra Appl. 25, 41–43 (1979)

    MathSciNet  MATH  Google Scholar 

  58. Bhimasankaram, P.: Common solutions to the linear matrix equations \(AX=C\), \(XB=D\) and \(FXG=H\). Sankhya Ser. A 38, 404–409 (1976)

    MathSciNet  MATH  Google Scholar 

  59. Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51(3), 406–413 (1955)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Sheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LS., Zhang, S. A coupled quaternion matrix equations with applications. J. Appl. Math. Comput. 69, 4069–4089 (2023). https://doi.org/10.1007/s12190-023-01916-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01916-1

Keywords

Mathematics Subject Classification

Navigation