Skip to main content
Log in

Some improved Dai–Yuan conjugate gradient methods for large-scale unconstrained optimization problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce some modifications of the classic conjugate gradient method Dai–Yuan, to solve large-scale unconstrained optimization problems. Our modifications are based on four improved secant conditions. We indicate that the presented methods inherit the appropriate global convergence property of the Dai–Yuan method. Furthermore, we illustrate the amazing numerical behavior of these modifications in two sets of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49(6), 409–435 (1952). https://doi.org/10.6028/JRES.049.044

    Article  MathSciNet  Google Scholar 

  2. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1962). https://doi.org/10.1093/comjnl/7.2.149

    Article  MathSciNet  Google Scholar 

  3. Polak, E., Ribiére, G.: Note sur la convergence de méthodes de directions conjuguées. Francaise Informat. Recherche Opertionelle, 3e année 3(R1), 35–43 (1969)

    Google Scholar 

  4. Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9(4), 94–112 (1969). https://doi.org/10.1016/0041-5553(69)90035-4

    Article  Google Scholar 

  5. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999). https://doi.org/10.1137/S1052623497318992

    Article  MathSciNet  Google Scholar 

  6. Li, M.: A family of three-term nonlinear conjugate gradient methods close to the memoryless BFGS method. Optim. Lett. 12(8), 1911–1927 (2018). https://doi.org/10.1007/s11590-017-1205-y

    Article  MathSciNet  Google Scholar 

  7. Liu, J.K., Feng, Y.M., Zou, L.M.: Some three-term conjugate gradient methods with the inexact line search condition. Calcolo 55(2), 1–16 (2018). https://doi.org/10.1007/s10092-018-0258-3

    Article  MathSciNet  Google Scholar 

  8. Livieris, I.E., Pintelas, P.: A limited memory descent Perry conjugate gradient method. Optim. Lett. 10(8), 1725–1742 (2016). https://doi.org/10.1007/s11590-015-0979-z

    Article  MathSciNet  Google Scholar 

  9. Wu, Y.: A modified three-term PRP conjugate gradient algorithm for optimization models. J. Inequal. Appl. 97(1), 1–14 (2017). https://doi.org/10.1186/s13660-017-1373-4

    Article  MathSciNet  Google Scholar 

  10. Zhang, Y., Dan, B.: An efficient adaptive scaling parameter for the spectral conjugate gradient method. Optim. Lett. 10(1), 119–136 (2016). https://doi.org/10.1007/s11590-015-0865-8

    Article  MathSciNet  Google Scholar 

  11. Jiang, X.Z., Jian, J.B.: Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with the strong Wolfe line search. J. Comput. Appl. Math. 348(1), 525–534 (2019). https://doi.org/10.1016/j.cam.2018.09.012

    Article  MathSciNet  Google Scholar 

  12. Zhu, Z., Zhang, D., Wang, S.: Two modified DY conjugate gradient methods for unconstrained optimization problems. Appl. Math. Comput. 373(1), 125004 (2020). https://doi.org/10.1016/j.amc.2019.125004

    Article  MathSciNet  Google Scholar 

  13. Abubakar, A.B., Kumam, P., Malik, M., Chaipunya, P., Ibrahim, A.S.: A hybrid FR–DY conjugate gradient algorithm for unconstrained optimization with application in portfolio selection. AIMS Math. 6(6), 6506–6527 (2021). https://doi.org/10.1016/j.amc.2015.08.014

    Article  MathSciNet  Google Scholar 

  14. Deepho, J., Abubakar, A.B., Malik, M., Argyros, I.K.: Solving unconstrained optimization problems via hybrid CD–DY conjugate gradient methods with applications. J. Comput. Appl. Math. 405(1), 113823 (2022). https://doi.org/10.1016/j.cam.2021.113823

    Article  MathSciNet  Google Scholar 

  15. Waziri, M.Y., Ahmed, K.: Two descent Dai–Yuan conjugate gradient methods for systems of monotone nonlinear equations. J. Sci. Comput. 90(1), 1–53 (2022). https://doi.org/10.1007/s10915-021-01713-7

    Article  MathSciNet  Google Scholar 

  16. Andrei, N.: A Dai–Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization. Appl. Math. Lett. 21(2), 165–171 (2008). https://doi.org/10.1016/j.aml.2007.05.002

    Article  MathSciNet  Google Scholar 

  17. Zhu, H., Chen, X.: Global convergence of a special case of the Dai–Yuan family without line search. Asia-Pac. J. Oper. Res. 25(3), 411–420 (2008). https://doi.org/10.1142/S0217595908001663

    Article  MathSciNet  Google Scholar 

  18. Zhang, L.: Two modified Dai–Yuan nonlinear conjugate gradient methods. Numer. Algorithms 50(1), 1–16 (2009). https://doi.org/10.1007/s11075-008-9213-8

    Article  MathSciNet  Google Scholar 

  19. Jiang, X.Z., Jian, J.B.: A sufficient descent Dai–Yuan type nonlinear conjugate gradient method for unconstrained optimization problems. Nonlinear Dyn. 72(1), 101–112 (2013). https://doi.org/10.1007/s11071-012-0694-6

    Article  MathSciNet  Google Scholar 

  20. Babaie-Kafaki, S., Ghanbari, R.: A hybridization of the Hestenes–Stiefel and Dai–Yuan conjugate gradient methods based on a least-squares approach. Optim. Methods Softw. 30(4), 673–681 (2015). https://doi.org/10.1080/10556788.2014.966825

    Article  MathSciNet  Google Scholar 

  21. Yuan, Y.X.: A modified BFGS algorithm for unconstrained optimization. IMA J. Numer. Anal. 11(3), 325–332 (1991). https://doi.org/10.1093/imanum/11.3.325

    Article  MathSciNet  Google Scholar 

  22. Wei, Z., Li, G., Qi, L.: New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput. 175(2), 1156–1188 (2006). https://doi.org/10.1016/j.amc.2005.08.027

    Article  MathSciNet  Google Scholar 

  23. Zhang, J.Z., Deng, N.Y., Chen, L.H.: New quasi-Newton equation and related methods for unconstrained optimization. J. Optim. Theory Appl. 102(1), 147–167 (1999). https://doi.org/10.1023/A:1021898630001

    Article  MathSciNet  Google Scholar 

  24. Zhang, J., Xu, C.: Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations. J. Comput. Appl. Math. 137(2), 269–278 (2001). https://doi.org/10.1016/S0377-0427(00)00713-5

    Article  MathSciNet  Google Scholar 

  25. Biglari, F., Hassan, M.A., Leong, W.J.: New quasi-Newton methods via higher order tensor models. J. Comput. Appl. Math. 235(8), 2412–2422 (2011). https://doi.org/10.1016/j.cam.2010.10.041

    Article  MathSciNet  Google Scholar 

  26. Bojari, S., Eslahchi, M.R.: Global convergence of a family of modified BFGS methods under a modified weak-Wolfe-Powell line search for nonconvex functions. 4OR-Q. J. Oper. Res. 18(2), 219–244 (2020). https://doi.org/10.1007/s10288-019-00412-2

    Article  MathSciNet  Google Scholar 

  27. Andrea, C., Giovanni, F., Massimo, R.: Novel preconditioners based on quasi-Newton updates for nonlinear conjugate gradient methods. Optim. Lett. 11(4), 835–853 (2017). https://doi.org/10.1007/s11590-016-1060-2

    Article  MathSciNet  Google Scholar 

  28. Bojari, S., Eslahchi, M.R.: Two families of scaled three-term conjugate gradient methods with sufficient descent property for nonconvex optimization. Numer. Algorithms 83(3), 901–933 (2020). https://doi.org/10.1007/s11075-019-00709-7

    Article  MathSciNet  Google Scholar 

  29. Eslahchi, M.R., Bojari, S.: Global convergence of a new sufficient descent spectral three-term conjugate gradient class for large-scale optimization. Optim. Method Softw. (2020). https://doi.org/10.1080/10556788.2020.1843167

    Article  Google Scholar 

  30. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Springer Series in Operations Research, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

  31. Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008). https://api.semanticscholar.org/CorpusID:63504217

  32. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013). https://doi.org/10.1504/IJMMNO.2013.055204

    Article  Google Scholar 

  33. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful suggestions and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Eslahchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojari, S., Eslahchi, M.R. Some improved Dai–Yuan conjugate gradient methods for large-scale unconstrained optimization problems. J. Appl. Math. Comput. 69, 4213–4228 (2023). https://doi.org/10.1007/s12190-023-01918-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01918-z

Keywords

Mathematics Subject Classification

Navigation