Skip to main content
Log in

A novel inertial Tseng’s method for solving generalized variational inequality problem

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new mapping called h-pseudomonotone mapping, which is a generalization of various monotone mappings in the literature. We also propose a new method namely inertial Tseng’s viscosity approximation method for solving generalized variational inequality problem using h-pseudomonotone mapping. We prove its strong convergence. Our finding enhances a number of findings in the literature. In addition, we give numerical examples to demonstrate the effectiveness of our method over other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stampacchia, G.: Formes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  Google Scholar 

  2. Hartman, P., Stampacchia, G.: On some non-linear elliptic differential-functional equations. Acta Math. 115, 271–310 (1966)

    MathSciNet  Google Scholar 

  3. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Google Scholar 

  4. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5), 877–898 (1976)

    MathSciNet  Google Scholar 

  5. Zeng, S.D., Radulescu, V.D., Winkert, P.: Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions. SIAM J. Math. Anal. 54, 1898–1926 (2022)

    MathSciNet  Google Scholar 

  6. Zeng, S.D., Migorski, S., Liu, Z.H.: Nonstationary incompressible Navier–Stokes system governed by a quasilinear reaction–diffusion equation (in Chinese). Sci Sin Math 52, 331–354 (2022)

    Google Scholar 

  7. Zeng, S.D., Vilches, E.: Well-posedness of history/state-dependent implicit sweeping processes. J. Optim. Theory Appl. 186, 960–984 (2020)

    MathSciNet  Google Scholar 

  8. Lin, T.C.: Approximation theorems and fixed point theorems in cones. Proc. Am. Math. Soc. 102(2), 502–506 (1988)

    MathSciNet  Google Scholar 

  9. Yao, Y., Chen, R., Xu, H.K.: Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 72, 3447–3456 (2010)

    MathSciNet  Google Scholar 

  10. Godwin, E.C., Alakoya, T.O., Mewomo, O.T., Yao, J.C.: Relaxed inertial Tseng’s extragradient method for variational inequality and fixed point problems. Appl. Anal. 1–26 (2022)

  11. Uzor, V.A., Alakoya, T.O., Mewomo, O.T.: Strong convergence of a self-adaptive inertial Tseng’s extragradient method for pseudomonotone variational inequalities and fixed point problems. Open Math. 20(1), 234–257 (2022)

    MathSciNet  Google Scholar 

  12. Jolaoso, L.O.: An inertial projection and contraction method with a line search technique for variational inequality and fixed point problems. Optimization 71(12), 3485–3514 (2022)

    MathSciNet  Google Scholar 

  13. Liu, Z.H., Motreanu, D., Zeng, S.D.: Generalized penalty and regularization method for differential variational-hemivariational inequalities. SIAM J. Optim. 31, 1158–1183 (2021)

    MathSciNet  Google Scholar 

  14. Zeng, S.D., Migórski, S., Liu, Z.H.: Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities. SIAM J. Optim. 31, 2829–2862 (2021)

    MathSciNet  Google Scholar 

  15. Zeng, S.D., Migórski, S., Khan, A.A.: Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J. Control. Optim. 59, 1246–1274 (2021)

    MathSciNet  Google Scholar 

  16. Rajpoot, A.K., Ishtyak, M., Ahmad, R., Wang, Y., Yao, J.C.: Convergence analysis for Yosida variational inclusion problem with its corresponding Yosida resolvent equation problem through inertial extrapolation scheme. Mathematics 11, 763 (2023)

    Google Scholar 

  17. Wang, Y., Gao, Y., Jiang, B.: Weak and strong convergence of a modified adaptive generalized Popov’s algorithm for solving variational inequality problems. Optimization 7, 1–27 (2023)

    Google Scholar 

  18. Rehman, H.U., Kumam, P., Ozdemir, M., Argyros, I.K., Kumam, W.: Three novel inertial explicit Tseng’s extragradient methods for solving pseudomonotone variational inequalities. Optimization 71(16), 4697–4730 (2022)

    MathSciNet  Google Scholar 

  19. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)

    MathSciNet  Google Scholar 

  20. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148(2), 318–335 (2011)

    MathSciNet  Google Scholar 

  21. Tseng, T.K., Lin, Y.S., Chen, Y.J., Chu, H.: A review of photocatalysts prepared by sol-gel method for VOCs removal. Int. J. Mol. Sci. 11(6), 2336–2361 (2010)

    Google Scholar 

  22. Yang, J., Liu, H.: Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer. Algorithms 80, 741–752 (2019)

    MathSciNet  Google Scholar 

  23. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    MathSciNet  Google Scholar 

  24. Thong, D.V., Hieu, D.V., Rassias, T.M.: Self-adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optim. Lett. 14, 115–144 (2020)

    MathSciNet  Google Scholar 

  25. Anh, P.K., Thong, D.V., Vinh, N.T.: Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. Optimization 71(3), 505–528 (2022)

    MathSciNet  Google Scholar 

  26. Fang, S.C., Peterson, E.L.: Generalized variational inequalities. J. Optim. Theory Appl. 38, 363–383 (1982)

    MathSciNet  Google Scholar 

  27. Verma, R.U.: On generalized variational inequalities involving relaxed Lipschitz and relaxed monotone operators. J. Math. Anal. 213(1), 387–392 (1997)

    MathSciNet  Google Scholar 

  28. Kien, B.T., Lee, G.M.: An existence theorem for generalized variational inequalities with discontinuous and pseudomonotone operators. Nonlinear Anal. Theory Methods Appl. 74(4), 1495–1500 (2011)

    MathSciNet  Google Scholar 

  29. Kien, B.T., Wong, M.M., Wong, N.C., Yao, J.C.: Degree theory for generalized variational inequalities and applications. Eur. J. Oper. Res. 192(3), 730–736 (2009)

    MathSciNet  Google Scholar 

  30. Zhang, L.J., Chen, J.M., Hou, Z.B.: Viscosity approximation methods for nonexpansive mappings and generalized variational inequalities. Acta Math. Sin 53, 691–6988 (2010)

    MathSciNet  Google Scholar 

  31. Yao, Y., Postolache, M., Yao, J.C.: An iterative algorithm for solving generalized variational inequalities and fixed points problems. Mathematics 7(1), 61 (2019)

    MathSciNet  Google Scholar 

  32. Yao, Y., Postolache, M., Yao, J.C.: Iterative algorithms for generalized variational inequalities. UPB Sci. Bull. Ser. A. 81, 3–16 (2019)

    MathSciNet  Google Scholar 

  33. Zhu, L.J., Shahzad, N., Asiri, A.: Iterative solutions for solving variational inequalities and fixed-point problems. J. Funct. Spaces 2021, 1–10 (2021)

    MathSciNet  Google Scholar 

  34. Cen, J.X., Khan, A.A., Motreanu, D., Zeng, S.D.: Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems. Inverse Prob. 38(6), 065006 (2022)

    MathSciNet  Google Scholar 

  35. Bai, Y.R., Papageorgiou, N.S., Zeng, S.D.: A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian. Math. Z. 300, 325–345 (2022)

    MathSciNet  Google Scholar 

  36. Zeng, S.D., Bai, Y.R., Gasinski, L., Winkert, P.: Existence results for double phase implicit obstacle problems involving multivalued operators. Calc. Var. PDEs 59, 1–18 (2020)

    MathSciNet  Google Scholar 

  37. Zeng, S.D., Papageorgiou, N.S., Radulescu, V.D.: Nonsmooth dynamical systems: from the existence of solutions to optimal and feedback control. Bull. Sci. Math. 176, 103131 (2022)

    MathSciNet  Google Scholar 

  38. Batra, C., Gupta, N., Chugh, R., Kumar, R.: Generalized viscosity extragradient algorithm for pseudomonotone equilibrium and fixed point problems for finite family of demicontractive operators. J. Appl. Math. Comput. 68(6), 4195–4222 (2022)

    MathSciNet  Google Scholar 

  39. Chugh, R., Kumar, R., Batra, C.: Variational inequality problem with application to convex minimization problem. Math. Eng. Sci. Aerosp. 14(1), 71–82 (2023)

    Google Scholar 

  40. Chugh, R., Gupta, N.: Strong convergence of new split general system of monotone variational inclusion problem. Appl Anal. 1–28 (2023)

  41. Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. 20(2), 197–228 (1967)

    MathSciNet  Google Scholar 

  42. Kachurovskii, R.I.: Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk 15(4), 213–215 (1960)

    Google Scholar 

  43. Noor, M.A.: Pseudomonotone general mixed variational inequalities. Appl. Math. Comput. 141(2–3), 529–540 (2003)

    MathSciNet  Google Scholar 

  44. Noor, M.A.: Implicit dynamical systems and quasi variational inequalities. Appl. Math. Comput. 134(1), 69–81 (2003)

    MathSciNet  Google Scholar 

  45. Nandal, A., Chugh, R., Postolache, M.: Iteration process for fixed point problems and zeros of maximal monotone operators. Symmetry 11(5), 655 (2019)

    Google Scholar 

  46. Postolache, M., Nandal, A., Chugh, R.: Strong convergence of a new generalized viscosity implicit rule and some applications in Hilbert space. Mathematics 7(9), 773 (2019)

    Google Scholar 

  47. Nandal, A., Chugh, R.: On zeros of accretive operators with application to the convex feasibility problem. UPB Sci. Bull. Ser. A. 81, 95–106 (2019)

    MathSciNet  Google Scholar 

  48. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18(4), 445–454 (1976)

    MathSciNet  Google Scholar 

  49. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I–II. Springer, New York (2003)

    Google Scholar 

  50. Rehman, H.U., Kumam, P., Özdemir, M., Karahan, I.: Two generalized non-monotone explicit strongly convergent extragradient methods for solving pseudomonotone equilibrium problems and applications. Math. Comput. Simul. 201, 616–639 (2022)

    MathSciNet  Google Scholar 

  51. Abubakar, J., Kumam, P., Rehman, H.U.: Self-adaptive inertial subgradient extragradient scheme for pseudomonotone variational inequality problem. Int. J. Nonlinear Sci. Numer. 23(1), 77–96 (2022)

    MathSciNet  Google Scholar 

  52. Sun, W., Lu, G., Jin, Y., Park, C.: A unified framework for solving generalized variational inequalities. J. Math. Inequalities 16(1), 189–210 (2022)

    MathSciNet  Google Scholar 

  53. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York and Basel (1984)

    Google Scholar 

  54. Alber, Y., Ryazantseva, I.: Nonlinear Ill-Posed Problems of Monotone Type. Spinger, Dordrecht (2006)

    Google Scholar 

  55. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    MathSciNet  Google Scholar 

  56. Takahashi, W.: Nonlinear functional analysis. Fixed Point Theory Appl. (2000)

  57. Meštrović, R., Kalaj, D.: A converse of Minkowski’s type inequalities. J. Inequal. Appl. 2010, 1–9 (2010)

    MathSciNet  Google Scholar 

  58. Wang, Y., Kim, T.H., Fang, X.: Weak and strong convergence theorems for the multiple-set split equality common fixed-point problems of demicontractive mappings. J. Funct. Spaces 2017, 1–11 (2017)

    MathSciNet  Google Scholar 

  59. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    MathSciNet  Google Scholar 

  60. Thong, D.V., Vinh, N.T., Cho, Y.J.: A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems. Optim. Lett. 14, 1157–1175 (2020)

    MathSciNet  Google Scholar 

  61. Tan, B., Qin, X.: Strong convergence of an inertial Tseng’s extragradient algorithm for pseudomonotone variational inequalities with applications to optimal control problems (2020). arXiv:2007.11761v1 [math.OC]

Download references

Acknowledgements

The authors thank the the referee for his/her valuable comments and suggestions. The Third author gratefully acknowledges financial support from the University Grants Commission (UGC), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Batra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugh, R., Kumar, R. & Batra, C. A novel inertial Tseng’s method for solving generalized variational inequality problem. J. Appl. Math. Comput. 69, 4525–4551 (2023). https://doi.org/10.1007/s12190-023-01942-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01942-z

Keywords

Mathematics Subject Classification

Navigation