Skip to main content
Log in

Hyers–Ulam stability and existence of solutions for high-order fractional q-difference equations on infinite intervals

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Recently, fractional q-difference equations on infinite intervals have attracted much attention due to their potential applications in many fields. In this paper, we investigate a class of nonlinear high-order fractional q-difference equations with integral boundary conditions on infinite intervals, where the nonlinearity contains Riemann–Liouville fractional q-derivatives of different orders of unknown function. By means of Schaefer fixed point theorem, Leray–Schauder nonlinear alternative and Banach contraction mapping principle, we acquire the existence and uniqueness results of solutions. Furthermore, we establish the Hyers–Ulam stability for the proposed problem. In the end, several concrete examples are utilized to demonstrate the validity of main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jackson, F.H.: On \(q\)-functions and a certain difference operator. Trans. R. Soc. Edinb. 46(2), 253–281 (1909)

    Article  MathSciNet  Google Scholar 

  2. Al-Salam, W.A.: Some fractional \(q\)-integrals and \(q\)-derivatives. Proc. Edinb. Math. Soc. 15(2), 135–140 (1966)

    Article  MathSciNet  Google Scholar 

  3. Agarwal, R.P.: Certain fractional \(q\)-integrals and \(q\)-derivatives. Proc. Camb. Philos. Soc. 66(2), 365–370 (1969)

    Article  MathSciNet  Google Scholar 

  4. Koornwinder, T.H., Swarttow, R.F.: On \(q\)-analogues of the Fourier and Hankel transforms. Trans. Am. Math. Soc. 333(1), 445–461 (1992)

    MathSciNet  Google Scholar 

  5. Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in \(q\)-calculus. Appl. Anal. Discrete Math. 1, 311–323 (2007)

    Article  MathSciNet  Google Scholar 

  6. Alsaedi, A., Ahmad, B., Al-Hutami, H.: A study of nonlinear fractional \(q\)-difference equations with nonlocal integral boundary conditions. Abstr. Appl. Anal. 2013, 1–8 (2013)

    MathSciNet  Google Scholar 

  7. Boutiaraa, A., Benbachir, M.: Existence and uniqueness results to a fractional \(q\)-difference coupled system with integral boundary conditions via topological degree theory. Int. J. Nonlinear Anal. Appl. 13(1), 3197–3211 (2022)

    Google Scholar 

  8. Ferreira, R.A.C.: Positive solutions for a class of boundary value problems with fractional \(q\)-differences. Comput. Math. Appl. 61(2), 367–373 (2011)

    Article  MathSciNet  Google Scholar 

  9. Wang, G., Bai, Z., Zhang, L.: Successive iterations for unique positive solution of a nonlinear fractional \(q\)-integral boundary value problem. J. Appl. Anal. Comput. 9(4), 1204–1215 (2019)

    MathSciNet  Google Scholar 

  10. Ma, K., Sun, S., Han, Z.: Existence of solutions of boundary value problems for singular fractional \(q\)-difference equations. J. Appl. Math. Comput. 54, 23–40 (2017)

    Article  MathSciNet  Google Scholar 

  11. Zhai, C., Ren, J.: The unique solution for a fractional \(q\)-difference equation with three-point boundary conditions. Fractal Fract. 29(3), 948–961 (2018)

    MathSciNet  Google Scholar 

  12. Samei, M.E., Yang, W.: Existence of solutions for \(k\)-dimensional system of multi-term fractional \(q\)-integro-differential equations under anti-periodic boundary conditions via quantum calculus. Math. Methods Appl. Sci. 43(7), 4360–4382 (2020)

    MathSciNet  Google Scholar 

  13. Samei, M.E., Ahmadi, A., Selvam, A.G.M., Alzabut, J., Rezapour, S.: Well-posed conditions on a class of fractional \(q\)-differential equations by using the Schauder fixed point theorem. Adv. Differ. Equ. 2021(482), 1–26 (2021)

    MathSciNet  Google Scholar 

  14. Yu, C., Wang, S., Wang, J., Li, J.: Solvability criterion for fractional \(q\)-integro-difference system with Riemann–Stieltjes integrals conditions. Fractal Fract. 6(10), 1–21 (2022)

    Article  Google Scholar 

  15. Alsaedi, A., Ahmad, B., Al-Hutami, H., Alharbi, B.: Investigation of hybrid fraction \(q\)-integro-difference equations supplemented with nonlocal \(q\)-integral boundary conditions. Demonstr. Math. 56(1), 1–19 (2023)

    Google Scholar 

  16. Wang, J., Yu, C., Guo, Y.: Solvability for nonlinear fractional \(q\)-difference equations with nonlocal conditions. Int. J. Model. Identif. Control. 30(4), 303–309 (2018)

    Article  Google Scholar 

  17. Yang, L., Chen, H., Luo, L., Luo, Z.: Successive iteration and positive solutions for boundary value problem of nonlinear fractional \(q\)-difference equation. J. Appl. Math. Comput. 42, 89–102 (2013)

    Article  MathSciNet  Google Scholar 

  18. Samei, M.E.: Employing Kuratowski measure of non-compactness for positive solutions of system of singular fractional \(q\)-differential equations with numerical effects. Filomat 34(9), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  19. Samei, M.E., Ghaffari, R., Yao, S., Kaabar, M.K.A., Martínez, F., Inc, M.: Existence of solutions for a singular fractional \(q\)-differential equations under Riemann-Liouville integral boundary condition. Symmetry 13(7), 1–20 (2021)

    Article  Google Scholar 

  20. Alsaedi, A., Al-Hutami, H., Ahmad, B.: Existence results for a coupled system of nonlinear fractional \(q\)-integro-difference equations with \(q\)-integral coupled boundary conditions. Fractals 30(1), 1–19 (2022)

    Article  Google Scholar 

  21. Samei, M.E., Karimi, L., Kaabar, M.K.A.: To investigate a class of multi-singular pointwise defined fractional \(q\)-integro-differential equation with applications. AIMS Math. 7(5), 7781–7816 (2022)

    Article  MathSciNet  Google Scholar 

  22. Jiang, M., Huang, R.: Monotone iterative schemes for positive solutions of a fractional \(q\)-difference equation with integral boundary conditions on the half-line. J. Math. 2021, 1–19 (2021)

    MathSciNet  Google Scholar 

  23. Ma, K., Li, X., Sun, S.: Boundary value problems of fractional \(q\)-difference equations on the half-line. Bound. Value Probl. 2019(46), 1–16 (2019)

    MathSciNet  Google Scholar 

  24. Boutiara, A., Benbachir, M., Kaabar, M.K.A., Martínez, F., Samei, M.E., Kaplan, M.: Explicit iteration and unbounded solutions for fractional \(q\)-difference equations with boundary conditions on an infinite interval. J. Inequal. Appl. 2022(29), 1–27 (2022)

    MathSciNet  Google Scholar 

  25. Zhao, X., Ge, W.: Unbounded solutions for a fractional boundary value problems on the infinite interval. Acta Appl. Math. 109, 495–505 (2010)

    Article  MathSciNet  Google Scholar 

  26. Wang, G.: Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval. Appl. Math. Lett. 47, 1–7 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zhang, R., Wang, W.: Existence of solutions for a class of fractional differential equations with three-point boundary value problem on infinite interval. J. Cent. China Norm. Univ. Nat. Sci. 54(3), 345–351 (2020)

    MathSciNet  Google Scholar 

  28. Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1968)

    Google Scholar 

  29. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27(4), 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  30. Abbas, S., Benchohra, M., Laledj, N., Zhou, Y.: Existence and Ulam stability for implicit fractional \(q\)-difference equations. Adv. Differ. Equ. 2019(480), 1–12 (2019)

    MathSciNet  Google Scholar 

  31. Prasad, K.R., Khuddush, M., Leela, D.: Existence, uniqueness and Hyers–Ulam stability of a fractional order iterative two-point boundary value problems. Afr. Mat. 32, 1227–1237 (2021)

    Article  MathSciNet  Google Scholar 

  32. Rus, I.A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26(1), 103–107 (2010)

    MathSciNet  Google Scholar 

  33. Houas, M., Martínez, F., Samei, M.E., Kaabar, M.K.A.: Uniqueness and Ulam–Hyers–Rassias stability results for sequential fractional pantograph \(q\)-differential equations. J. Inequal. Appl. 2022(93), 1–24 (2022)

    MathSciNet  Google Scholar 

  34. Lachouri, A., Samei, M.E., Ardjouni, A.: Existence and stability analysis for a class of fractional pantograph \(q\)-difference equations with nonlocal boundary conditions. Bound. Value Probl. 2023(2), 1–20 (2023)

    MathSciNet  Google Scholar 

  35. Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1974)

    Google Scholar 

  36. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable comments and suggestions. The research project is supported by the Natural Science Foundation of Hebei Province (Grant No. A2015208114) and the Foundation of Hebei Education Department (Grant No. QN2017063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlong Yu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, J. & Yu, C. Hyers–Ulam stability and existence of solutions for high-order fractional q-difference equations on infinite intervals. J. Appl. Math. Comput. 69, 4665–4688 (2023). https://doi.org/10.1007/s12190-023-01947-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01947-8

Keywords

Mathematics Subject Classification

Navigation