Skip to main content
Log in

Numerical analysis of linearly implicit Euler method for age-structured SIS model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider a numerical threshold for a coupled age-structured SIS epidemic model. We deal with the existence, convergence and stability of a linearly implicit Euler method for an age-independent SIS model firstly. It is shown that the numerical processes replicate the global dynamical behaviors of SIS model for any time-step size. We continue analyzing an age-structured SIS model similarly by introducing the numerical total population \(p_{j}^{n}\) to overcome the coupling. With the help of Krein–Rutman’s theorem, the numerical basic reproduction numbers \(R_{\Delta t}^{1}\) and \(R_{\Delta t}^{2}\) are presented, which play a decisive role in the numerical dynamical behavior of disease-free equilibrium and endemic equilibrium. Moreover, instead of the convergence of numerical solutions, it is much more interesting that the numerical basic reproduction numbers converge to the exact ones with accuracy of order 1. Finally, numerical applications to SIS epidemic models illustrate the verification and the efficiency of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-I. 1927. Bull. Math. Biol. 53(1–2), 33–55 (1991)

    Google Scholar 

  2. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. II—The problem of endemicity. Bull. Math. Biol. 138(834), 55–83 (1932)

    Google Scholar 

  3. Otunuga, O.M.: Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19. Chaos Solitons Fractals 147, 110983 (2021)

    Article  MathSciNet  Google Scholar 

  4. Iannelli, M., Milner, F.A., Pugliese, A.: Analytical and numerical results for the age-structured SIS epidemic model with mixed inter-intracohort transmission. SIAM J. Math. Anal. 23(3), 662–688 (1992)

    Article  MathSciNet  Google Scholar 

  5. Busenberg, S.N., Iannelli, M., Thieme, H.R.: Global behavior of an age-structured epidemic model. SIAM J. Math. Anal. 22(4), 1065–1080 (1991)

    Article  MathSciNet  Google Scholar 

  6. Busenberg, S.N., Iannelli, M., Thieme, H.R., et al.: Dynamics of an age structured epidemic model. Dyn. Syst. Nankai Ser. Pure Appl. Math. Theor. Phys. 4, 1–19 (1993)

  7. Ainseba, B., Bouguima, S., Fekih, S.: Biological consistency of an epidemic model with both vertical and horizontal transmissions. Nonlinear Anal. Real World Appl. 28, 192–207 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kang, H., Ruan, S.: Mathematical analysis on an age-structured SIS epidemic model with nonlocal diffusion. J. Math. Biol. 83(1), 5 (2021)

    Article  MathSciNet  Google Scholar 

  9. Alexanderian, A., Gobbert, M.K., Fister, K.R., Gaff, H., Lenhart, S., Schaefer, E.: An age-structured model for the spread of epidemic cholera: analysis and simulation. Nonlinear Anal. Real World Appl. 12(6), 3483–3498 (2011)

    Article  MathSciNet  Google Scholar 

  10. McCluskey, C.C.: Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Math. Biosci. Eng. 9(4), 819–841 (2012)

    Article  MathSciNet  Google Scholar 

  11. Akimenko, V.V.: Asymptotically stable states of nonlinear age-structured monocyclic population model I. Travelling wave solution. Math. Comput. Simul. 133, 2–23 (2017)

    Article  MathSciNet  Google Scholar 

  12. Akimenko, V.V.: Asymptotically stable states of non-linear age-structured monocyclic population model II. Numerical simulation. Math. Comput. Simul. 133, 24–38 (2017)

    Article  MathSciNet  Google Scholar 

  13. Akimenko, V.V.: Nonlinear age-structured models of polycyclic population dynamics with death rates as power functions with exponent \(n\). Math. Comput. Simul. 133, 175–205 (2017)

    Article  MathSciNet  Google Scholar 

  14. Akimenko, V.V.: An age-structured SIR epidemic model with fixed incubation period of infection. Comput. Math. Appl. 73(7), 1485–1504 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kuniya, T.: Numerical approximation of the basic reproduction number for a class of age-structured epidemic models. Appl. Math. Lett. 73, 106–112 (2017)

    Article  MathSciNet  Google Scholar 

  16. Bacaër, N.: Approximation of the basic reproduction number \({R}_0\) for vector-borne diseases with a periodic vector population. Bull. Math. Biol. 69, 1067–1091 (2007)

    Article  MathSciNet  Google Scholar 

  17. Yang, H.Z., Yang, Z.W., Liu, S.Q.: Numerical threshold of linearly implicit Euler method for nonlinear infection-age SIR models. Discrete Cont. Dyn. B 28(1), 70–92 (2023)

    Article  MathSciNet  Google Scholar 

  18. Ganegoda, N., Götz, T., Wijaya, K.P.: An age-dependent model for dengue transmission: analysis and comparison to field data. Appl. Math. Comput. 388, 125538 (2021)

    MathSciNet  Google Scholar 

  19. Singh, A., Deolia, P.: COVID-19 outbreak: a predictive mathematical study incorporating shedding effect. J. Appl. Math. Comput. 69(1), 1239–1268 (2023)

    Article  MathSciNet  Google Scholar 

  20. Reyné, B., Richard, Q., Selinger, C., Sofonea, M.T., Djidjou-Demasse, R., Alizon, S.: Non-markovian modelling highlights the importance of age structure on Covid-19 epidemiological dynamics. Math. Modell. Nat. Phenom. 17, 7 (2022)

    Article  MathSciNet  Google Scholar 

  21. Bera, S., Khajanchi, S., Roy, T.K.: Stability analysis of fuzzy HTLV-I infection model: a dynamic approach. J. Appl. Math. Comput. 69(1), 171–199 (2023)

    Article  MathSciNet  Google Scholar 

  22. Bera, S., Khajanchi, S., Roy, T.K.: Dynamics of an HTLV-I infection model with delayed CTLs immune response. Appl. Math. Comput. 430, 127206 (2022)

    MathSciNet  Google Scholar 

  23. Mondal, J., Khajanchi, I., Akhtar, M.N.: A mathematical model for COVID-19 pandemic with the impact of economic development. In: Fractal Signatures in the Dynamics of an Epidemiology, pp. 118–134. CRC Press

  24. Tiwari, P.K., Rai, R.K., Khajanchi, S., Gupta, R.K., Misra, A.K.: Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns. Eur. Phys. J. Plus. 136(10), 994 (2021)

    Article  Google Scholar 

  25. Hattaf, K., Yousfi, N.: A numerical method for delayed partial differential equations describing infectious diseases. Comput. Math. Appl. 72(11), 2741–2750 (2016)

    Article  MathSciNet  Google Scholar 

  26. Hattaf, K., Lashari, A.A., El Boukari, B., Yousfi, N.: Effect of discretization on dynamical behavior in an epidemiological model. Differ. Equ. Dyn. Syst. 23, 403–413 (2015)

    Article  MathSciNet  Google Scholar 

  27. Yang, Z.W., Zuo, T.Q., Chen, Z.J.: Numerical analysis of linearly implicit Euler–Riemann method for nonlinear Gurtin–MacCamy model. Appl. Numer. Math. 163, 147–166 (2021)

    Article  MathSciNet  Google Scholar 

  28. Chen, Z.J., Xu, R.Z., Yang, Z.W.: Numerical analysis of linear \(\theta \)-methods with two-layer boundary conditions for age-structured population models. Math. Comput. Simul. 182, 603–619 (2021)

    Article  MathSciNet  Google Scholar 

  29. Yan, D.X., Fu, X.L.: Analysis of an age-structured HIV infection model with logistic target-cell growth and antiretroviral therapy. IMA J. Appl. Math. 83(6), 1037–1065 (2018)

    MathSciNet  Google Scholar 

  30. Rihan, F., Arafa, A., Rakkiyappan, R., Rajivganthi, C., Xu, Y.: Fractional-order delay differential equations for the dynamics of hepatitis C virus infection with IFN-\(\alpha \) treatment. Alex. Eng. J. 60(5), 4761–4774 (2021)

    Article  Google Scholar 

  31. Hattaf, K.: On the stability and numerical scheme of fractional differential equations with application to biology. Computation 10(6), 97 (2022)

    Article  Google Scholar 

  32. Hattaf, K.: A new class of generalized fractal and fractal-fractional derivatives with non-singular kernels. Fractal Fractional 7(5), 395 (2023)

    Article  Google Scholar 

Download references

Funding

This paper is supported by Heilongjiang Provincial Natural Science Foundation of China (LH2022A006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanwen Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yang, Z. & Sheng, D. Numerical analysis of linearly implicit Euler method for age-structured SIS model. J. Appl. Math. Comput. 70, 969–996 (2024). https://doi.org/10.1007/s12190-024-01986-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-01986-9

Keywords

Mathematics Subject Classification

Navigation