Skip to main content
Log in

An effective inertial-relaxed CGPM for nonlinear monotone equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an effective inertial-relaxed CGPM by considering the Armijo line search technique proposed by Amini and Kamandi (Numer Algorithms 70:559–570, 2015). The search direction designed possesses good properties. Furthermore, the global convergence is proved in the absence of the Lipschitz continuity. The numerical results on large-scale equations verify that our proposed method is efficient with the lower computational cost. In particular, applying it to sparse signal restoration indicates that the proposed algorithm is promising and competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    Google Scholar 

  2. Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22(4), 333–361 (1987)

    MathSciNet  Google Scholar 

  3. Iusem, A.N., Solodov, M.V.: Newton-type methods with generalized distances for constrained optimization. Optimization 41(3), 257–278 (1997)

    Article  MathSciNet  Google Scholar 

  4. Xiao, Y.H., Wang, Q.Y., Hu, Q.J.: Non-smooth equations based method for \(\ell _1\)-norm problems with applications to compressed sensing. Nonlinear Anal. 74(11), 3570–3577 (2011)

    Article  MathSciNet  Google Scholar 

  5. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Applied Optimization, vol. 22, pp. 355–369. Springer, Boston (1998)

    Chapter  Google Scholar 

  6. Sun, D., Womersley, R.S., Qi, H.: A feasible semismooth asymptotically Newton method for mixed complementarity problems. Math. Program. 94, 167–187 (2002)

    Article  MathSciNet  Google Scholar 

  7. Qi, L., Tong, X.J., Li, D.H.: Active-set projected trust region algorithm for box constrained nonsmooth equations. J. Optim. Theory Appl. 120, 601–625 (2004)

    Article  MathSciNet  Google Scholar 

  8. Ulbrich, M.: Nonmonotone trust-region method for bound-constrained semismooth equations with applications to nonlinear complementarity problems. SIAM J. Optim. 11(4), 889–917 (2001)

    Article  MathSciNet  Google Scholar 

  9. Zhang, L., Zhou, W.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196(2), 478–484 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Livieris, I.E., Pintelas, P.: Globally convergent modified Perry’s conjugate gradient method. Appl. Math. Comput. 218(18), 9197–9207 (2012)

    MathSciNet  Google Scholar 

  11. Dai, Z.F., Chen, X.H., Wen, F.H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equation. Appl. Math. Comput. 270, 378–386 (2015)

    MathSciNet  Google Scholar 

  12. Amini, K., Kamandi, A.: A new line search strategy for finding separating hyperplane in projection-based methods. Numer. Algorithms 70, 559–570 (2015)

    Article  MathSciNet  Google Scholar 

  13. Ou, Y., Li, L.: A unified convergence analysis of the derivative-free projection-based method for constrained nonlinear monotone equations. Numer. Algorithms 93(4), 1639–1660 (2023)

    Article  MathSciNet  Google Scholar 

  14. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control. Optim. 38(4), 1102–1119 (2000)

    Article  MathSciNet  Google Scholar 

  15. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  16. Papp, Z., Rapajić, S.: FR type methods for systems of large-scale nonlinear monotone equations. Appl. Math. Comput. 269, 816–823 (2015)

    MathSciNet  Google Scholar 

  17. Ibrahim, A.H., Kumam, P., Rapajić, S., Papp, Z., Abubakar, A.B.: Approximation methods with inertial term for large-scale nonlinear monotone equations. Appl. Numer. Math. 181, 417–435 (2022)

    Article  MathSciNet  Google Scholar 

  18. Alves, M.M., Eckstein, J., Geremia, M., Melo, J.G.: Relative-error inertial-relaxed inexact versions of Douglas–Rachford and ADMM splitting algorithms. Comput. Optim. Appl. 75, 389–422 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yin, J., Jian, J., Jiang, X., Wu, X.: A family of inertial-relaxed DFPM-based algorithms for solving large-scale monotone nonlinear equations with application to sparse signal restoration. J. Comput. Appl. Math. 419, 114674 (2023)

    Article  MathSciNet  Google Scholar 

  20. Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31(4), 1625–1635 (2011)

    Article  MathSciNet  Google Scholar 

  21. Jian, J., Yin, J., Tang, C., Han, D.: A family of inertial derivative-free projection methods for constrained nonlinear pseudo-monotone equations with applications. Comput. Appl. Math. 41(7), 309 (2022)

    Article  MathSciNet  Google Scholar 

  22. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)

    Article  MathSciNet  Google Scholar 

  23. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradient for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  24. Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9(4), 94–112 (1969)

    Article  Google Scholar 

  25. Dai, Y., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)

    Article  MathSciNet  Google Scholar 

  26. Rivaie, M., Mamat, M., June, L.W., Mohd, I.: A new class of nonlinear conjugate gradient coefficient with global convergence properties. Appl. Math. Comput. 218(22), 11323–11332 (2012)

    MathSciNet  Google Scholar 

  27. Wu, X., Shao, H., Liu, P., Zhang, Y., Zhuo, Y.: An efficient conjugate gradient-based algorithm for unconstrained optimization and its projection extension to large-scale constrained nonlinear equations with application in signal recovery and image denoising problems. J. Comput. Appl. Math. 422, 114879 (2023)

    Article  MathSciNet  Google Scholar 

  28. Jiang, X., Ma, G., Jian, J.: A new global convergent conjugate gradient method with Wolfe line search. Chin. Eng. Math. 28(6), 779–786 (2011)

    Google Scholar 

  29. Jiang, X., Yang, H., Jian, J., Wu, X.: Two families of hybrid conjugate gradient methods with restart procedures and their applications. Optim. Methods Softw. 1-28 (2023)

  30. Jian, J., Han, L., Jiang, X.: A hybrid conjugate gradient method with descent property for unconstrained optimization. Appl. Math. Model. 39(3–4), 1281–1290 (2015)

    Article  MathSciNet  Google Scholar 

  31. Hu, Q., Zhang, H., Chen, Y.: Global convergence of a descent PRP type conjugate gradient method for nonconvex optimization. Appl. Numer. Math. 173, 38–50 (2022)

    Article  MathSciNet  Google Scholar 

  32. Jiang, X., Jian, J.: A sufficient descent Dai-Yuan type nonlinear conjugate gradient method for unconstrained optimization problems. Nonlinear Dyn. 72, 101–112 (2013)

    Article  MathSciNet  Google Scholar 

  33. Abubakar, A.B., Kumam, P., Malik, M., Ibrahim, A.H.: A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems. Math. Comput. Simul. 201, 640–657 (2022)

    Article  MathSciNet  Google Scholar 

  34. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  35. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi Province (2023GXNSFBA026029), Guangxi Science and Technology Program (AD23023001), the Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi Province (2023KY0168), and Research Project of Guangxi Minzu University (2022KJQD03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghua Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, J., Ren, Z., Yin, J. et al. An effective inertial-relaxed CGPM for nonlinear monotone equations. J. Appl. Math. Comput. 70, 689–710 (2024). https://doi.org/10.1007/s12190-024-01991-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-01991-y

Keywords

Mathematics Subject Classification

Navigation