Skip to main content
Log in

On the finite difference method with penalty for numerical solution of PDEs over curved domains

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper aims to decipher the elliptic PDEs defined over curved complex domains with a penalty approach in a finite difference scheme. Using the penalty approach, we utilize the finite difference scheme with the aid of uniform Cartesian mesh irrespective of the shape and convexity of the domain. We introduce the finite difference schemes with the \(H^1\) and \(L^2\) penalties and furnish the sharp convergence of the solution of the penalized problems to the solution of the original problem. Several iterative solvers are also equipped for both the \(H^1\) and \(L^2\) penalty schemes to compare the required number of iterations and CPU time to achieve the desired accuracy. The comprehensive numerical experiments are performed to uphold the mathematical results and to exhibit the efficiency of the proposed idea for practical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    Google Scholar 

  2. Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81, 497–520 (1999)

    Article  MathSciNet  Google Scholar 

  3. Boffi, D., Gastaldi, L.: A fictitious domain approach with Lagrange multiplier for fluid–structure interactions. Numer. Math. 135, 711–732 (2017)

    Article  MathSciNet  Google Scholar 

  4. Börgers, C.: A triangulation algorithm for fast elliptic solvers based on domain imbedding. SIAM J. Numer. Anal. 27(5), 1187–1196 (1990)

    Article  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1977)

    Google Scholar 

  6. Das, S., Rajeev, S.: Solution of fractional diffusion equation with a moving boundary condition by variational iteration method and decomposition method. Zeitschrift für Naturforschung A 65(10), 793–799 (2010)

    Article  Google Scholar 

  7. Ellison, J.H., Hall, C.A., Porsching, T.A.: An unconditionally stable convergent finite difference method for Navier–Stokes problems on curved domains. SIAM J. Numer. Anal. 24(6), 1233–1248 (1887)

    Article  MathSciNet  Google Scholar 

  8. Fatoorehchi, H., Alidadi, M., Rach, R., Shojaeian, A.: Theoretical and experimental investigation of thermal dynamics of Steinhart-Hart negative temperature coefficient thermistors. J. Heat Transfer 141, (2019)

  9. Glowinski, R., Pan, T.W., Periaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111, 283–303 (1994)

    Article  MathSciNet  Google Scholar 

  10. Glowinski, R., Pan, T.W., Périaux, J.: A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies: (I) case where the rigid body motions are known a priori. C. R. Math. Acad. Sci. Paris 324, 361–369 (1997)

    Article  MathSciNet  Google Scholar 

  11. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169, 363–426 (2001)

    Article  MathSciNet  Google Scholar 

  12. Golub, G.H., Loan, C.V.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  13. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monograph and studies in Mathematics, vol. 24. Pitman Advanced Publishing program, Boston (1985)

    Google Scholar 

  14. Imbert, D., McNamara, S., Le Gonidec, Y.: Fictitious domain method for acoustic waves through a granular suspension of movable rigid spheres. J. Comput. Phys. 280, 676–691 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kale, S., Pradhan, D.: Error estimates of fictitious domain method with an \(H^1\) penalty approach for elliptic problems. Comput. Appl. Math. 41, 1–21 (2022)

    Article  Google Scholar 

  16. Kale, S., Pradhan, D.: An augmented interface approach in fictitious domain methods. Comput. Math. with Appl. 125, 238–247 (2022)

    Article  MathSciNet  Google Scholar 

  17. Kumar, S., Rathish Kumar, B.V., Murthy, S.K.: Double diffusive convective flow study of a hybrid nanofluid in an inverted T-shaped porous enclosure under the influence of Soret and Dufour prameters. J. Heat Mass Transfer 145(10), 102501 (2023)

    Article  Google Scholar 

  18. Kumar, S., Murthy, S. K., Rathish Kumar, B. V., Parmar, D.: Convective heat transfer enhancement in an inverted T-shaped porous enclosure through vertical varying circular cylinder. Numer. Heat. Tr. B-Fund, pp. 01-18 (2023)

  19. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer-Verlag, New York (1972)

    Book  Google Scholar 

  20. Maury, B.: Numerical Analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 47(2), 1126–1148 (2009)

    Article  MathSciNet  Google Scholar 

  21. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  22. Ortega, J.M.: Numerical Analysis; A Second Course. Academic Press, New York (1972)

    Google Scholar 

  23. Peskin, C.S.: Numerical Analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252 (1977)

    Article  MathSciNet  Google Scholar 

  24. Rasheed, S.K., Modanli, M., Abdulazeez, S.T.: Stability analysis and numerical implementation of the third-order fractional partial differential equation based on the Caputo fractional derivative. J. Appl. Math. Comput. Mech. 22(3), 33–42 (2023)

    Article  MathSciNet  Google Scholar 

  25. Saito, N., Zhou, G.: Analysis of the fictitious domain method with an \(L^2\)-penalty for elliptic problems. Numer. Funct. Anal. Optim. 36, 501–527 (2015)

    Article  MathSciNet  Google Scholar 

  26. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)

    Google Scholar 

  27. Słota, D.: Homotopy perturbation method for solving the two-phase inverse Stefan Problem, umer. Heat Transf. A 59(10), 755–768 (2011)

    Article  Google Scholar 

  28. Wloka, J.: Partial Differential Equations (translated by C.B and M.J. Thomos). Cambridge University Press (1987)

  29. Zhang, S.: Analysis of finite element domain embedding methods for curved domains using uniform grids. SIAM J. Numer. Anal. 46(6), 2843–2866 (2008)

    Article  MathSciNet  Google Scholar 

  30. Zhou, G.: The fictitious domain method with penalty for the parabolic problem in moving-boundary domain: the error estimate of penalty and the finite element approximation. Appl. Numer. Math. 115, 42–67 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zhou, G., Saito, N.: Analysis of the fictitious domain method with penalty for elliptic problems. Japan J. Indust. Appl. Math. 31, 57–85 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

“The first author acknowledges the Council of Scientific & Industrial Research (CSIR-HRDG) for the research fellowship via file number 09/992(0007)/ 2019-EMR-I.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Swapnil Kale or Debasish Pradhan.

Ethics declarations

Declarations

The authors declare that no financial or non-financial conflicts of interest are associated with this paper’s submission to the journal. The contribution is impartial and free from any influences that could affect the integrity of the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, S., Pradhan, D. & Tripathy, M. On the finite difference method with penalty for numerical solution of PDEs over curved domains. J. Appl. Math. Comput. 70, 893–915 (2024). https://doi.org/10.1007/s12190-024-01992-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-01992-x

Keywords

Mathematics Subject Classification

Navigation