Skip to main content
Log in

Chromatic polynomial of a picture fuzzy graph with application in traffic light control

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The fuzzy graph theory has many applications in solving various problems in multiple fields, including networking, communications, clustering, planning, and scheduling. In this article, we introduce the fundamental set of a picture fuzzy graph (PFG) and the \((\theta , \rho , \sigma )\)-level graph (\((\theta , \rho , \sigma )\)-LG) of a PFG, illustrating these concepts with an example. We then discuss the properties of the \((\theta , \rho , \sigma )\)-LGs of a PFG. Additionally, we introduce the concept of the chromatic polynomial (CP) of a PFG, providing a demonstration with an example using \((\theta , \rho , \sigma )\)-LGs of a PFG and exploring various properties of CP of a PFG. Furthermore, we construct an algorithm, which is executed using Matlab. This algorithm enables us to determine the number of distinct ways to colour a PFG with a specified number of colours. The application of the work presented is to answer the question: How does the picture fuzzy model propose to rectify the inefficiency in traffic signal timing where equal time is allocated to each vehicle in a flow based on vehicle count, leading to potential delays for vehicles with different characteristics, such as motorcycles and containers?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

This study did not involve the use of any data for support.

References

  1. Akram, M., Ahmad, U., Rukhsar, Karaaslan, F.: Complex Pythagorean fuzzy threshold graphs with application in petroleum replenishment. J. Appl. Math. Comput. 68(3), 2125–2150 (2022)

  2. Akram, M., Habib, A.: Hybridizing simulated annealing and genetic algorithms with Pythagorean fuzzy uncertainty for traveling salesman problem optimization. J. Appl. Math. Comput. 69, 4451–4497 (2023). https://doi.org/10.1007/s12190-023-01935-y

    Article  MathSciNet  Google Scholar 

  3. Akram, M., Nawaz, H.S.: Algorithms for the computation of regular single-valued neutrosophic soft hypergraphs applied to supranational Asian bodies. J. Appl. Math. Comput. 68(6), 4479–4506 (2022)

    Article  MathSciNet  Google Scholar 

  4. Akram, M., Saleem, D., Davvaz, B.: Energy of double dominating bipolar fuzzy graphs. J. Appl. Math. Comput. 61, 219–234 (2019). https://doi.org/10.1007/s12190-019-01248-z

    Article  MathSciNet  Google Scholar 

  5. Akram, M., Sattar, A.: Competition graphs under complex Pythagorean fuzzy information. J. Appl. Math. Comput. 63, 543–583 (2020). https://doi.org/10.1007/s12190-020-01329-4

    Article  MathSciNet  Google Scholar 

  6. Akram, M., Sitara, M.: Certain fuzzy graph structures. J. Appl. Math. Comput. 61, 25–56 (2019). https://doi.org/10.1007/s12190-019-01237-2

    Article  MathSciNet  Google Scholar 

  7. Akram, M.: Level graph of intuitionistic fuzzy graphs. Ann. Fuzzy Math. Inform. 16(1), 55–70 (2018)

    Article  MathSciNet  Google Scholar 

  8. Amanathulla, S., Bera, B., Pal, M.: Balanced picture fuzzy graph with application. Artif. Intell. Rev. 54(7), 5255–5281 (2021)

    Article  Google Scholar 

  9. Anjum, R., Gumaei, A., Ghaffar, A.: Certain notions of picture fuzzy information with applications. J. Math. (2021). https://doi.org/10.1155/2021/9931792

    Article  MathSciNet  Google Scholar 

  10. Arif, W., Khan, W.A., Rashmanlou, H., Khan, A., Muhammad, A.: Multi attribute decision-making and interval-valued picture (S, T)-fuzzy graphs. J. Appl. Math. Comput. 69, 2831–2856 (2023). https://doi.org/10.1007/s12190-023-01862-y

    Article  MathSciNet  Google Scholar 

  11. Ashebo, M.A., Repalle, V.N.S.R.: Fuzzy chromatic polynomial of fuzzy graphs with crisp and fuzzy vertices usings \(\alpha \)-cuts. Adv. Fuzzy Syst. (2019). https://doi.org/10.1155/2019/5213020

    Article  MathSciNet  Google Scholar 

  12. Ashebo, M.A., Repalle, V.N.S.R.: Strong fuzzy chromatic polynomial of fuzzy graphs and some fuzzy graph structures with applications. Pure Appl. Math. J. 9(1), 16–25 (2020). https://doi.org/10.11648/j.pamj.20200901.13

    Article  Google Scholar 

  13. Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKRs Session, Sofia, Deposed in Central Science Technology Library of Bulgarian Academy of Science 1697/84 (1983)

  14. Aydelotte, A.: An exploration of the chromatic polynomial. Mathematics Undergraduate Theses (2017) http://scholarworks.boisestate.edu/math_undergraduate_theses/7

  15. Cuong, B.C., Kreinovich, V.: Picture fuzzy sets-A new concept for computational intelligence problems. In: Third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, pp. 1–6 (2013)

  16. Cuong, B.C.: Picture fuzzy sets. J. Comput. Sci. Cybern. 30(4), 409–420 (2014). https://doi.org/10.15625/1813-9663/30/4/5032

    Article  Google Scholar 

  17. Eslahchi, C., Onagh, B.N.: Vertex-strength of fuzzy graphs. Int. J. Math. Math. Sci. 2006, 1–9 (2006). https://doi.org/10.1155/IJMMS/2006/43614

    Article  MathSciNet  Google Scholar 

  18. Gayathri, G., Mathew, S., Mordeson, J.N.: Connectivity of directed fuzzy incidence graphs applied to traffic networks. J. Appl. Math. Comput. 69, 3317–3336 (2023). https://doi.org/10.1007/s12190-023-01880-w

    Article  MathSciNet  Google Scholar 

  19. Kaufmann, A.: Introduction a la Theorie des Sousensemblesflous. Massonet Cie, Paris (1973)

    Google Scholar 

  20. Khan, W.A., Ali, B., Taouti, A.: Bipolar picture fuzzy graphs with application. Symmetry 13(8), 1427 (2021)

    Article  Google Scholar 

  21. Khan, W.A., Faiz, K., Taouti, A.: Cayley picture fuzzy graphs and interconnected networks. Intell. Autom. Soft Comput. (2022). https://doi.org/10.32604/iasc.2023.024484

    Article  Google Scholar 

  22. Kosari, S., Rao, Y., Jiang, H., Liu, X., Wu, P., Shao, Z.: Vague graph structure with application in medical diagnosis. Symmetry 12(10), 1582 (2020). https://doi.org/10.3390/sym12101582

    Article  Google Scholar 

  23. Kosari, S., Shao, Z., Rao, Y., Liu, X., Cai, R., Rashmanlou, H.: Some types of domination in vague graphs with application in medicine. J. Mult. Valued Log. Soft Comput. 40(3/4), 203–219 (2023)

    MathSciNet  Google Scholar 

  24. Kou, Z., Kosari, S., Akhoundi, M.: A novel description on vague graph with application in transportation systems. J. Math. 2021, 1–11 (2021). https://doi.org/10.1155/2021/4800499

    Article  MathSciNet  Google Scholar 

  25. Mahapatra, T., Ghorai, G., Pal, M.: Fuzzy fractional coloring of fuzzy graph with its application. J. Ambient. Intell. Humaniz. Comput. 11, 5771–5784 (2020). https://doi.org/10.1007/s12652-020-01953-9

    Article  Google Scholar 

  26. Mahapatra, T., Pal, M.: Fuzzy colouring of m-polar fuzzy graph and its application. J. Intell. Fuzzy Syst. 35(6), 6379–6391 (2018)

    Article  Google Scholar 

  27. Mahapatra, R., Samanta, S., Pal, M.: Applications of edge colouring of fuzzy graphs. Informatica 31(2), 313–330 (2020)

    Article  MathSciNet  Google Scholar 

  28. Mohideen, S.I., Rifayathali, M.A.: Coloring of intuitionistic fuzzy graphs using (\(\alpha \), \(\beta \))-cuts. Int. J. Math. Eng. IT. 2(12), (2015)

  29. Munoz, S., Ortuno, M.T., Ramirez, J., Yanez, J.: Coloring fuzzy graphs. Omega 33(3), 211–221 (2005)

    Article  Google Scholar 

  30. Nawaz, H.S., Akram, M.: Oligopolistic competition among the wireless internet service providers of Malaysia using fuzzy soft graphs. J. Appl. Math. Comput. 67, 855–890 (2021). https://doi.org/10.1007/s12190-021-01514-z

    Article  MathSciNet  Google Scholar 

  31. Nawaz, H.S., Akram, M.: Granulation of protein-protein interaction networks in Pythagorean fuzzy soft environment. J. Appl. Math. Comput. 69, 293–320 (2023). https://doi.org/10.1007/s12190-022-01749-4

    Article  MathSciNet  Google Scholar 

  32. Peng, X., Dai, J.: Algorithm for picture fuzzy multiple attribute decision-making based on new distance measure. Int. J. Uncertain. Quantif. 7(2), 177–187 (2017)

    Article  MathSciNet  Google Scholar 

  33. Phong, P. H., Hieu, D. T., Ngan, R. T., Them, P. T.: Some compositions of picture fuzzy relations. In: Proceedings of the 7th National Conference on Fundamental and Applied Information Technology Research (FAIR’7), Thai Nguyen, Vietnam. pp. 19–20 (2014)

  34. Rao, Y., Kosari, S., Gheisari, M.: New results in vague incidence graphs with application. J. Funct. Spaces (2022). https://doi.org/10.1155/2022/3475536

    Article  MathSciNet  Google Scholar 

  35. Rao, Y., Kosari, S., Shao, Z., Cai, R., Xinyue, L.: A study on domination in vague incidence graph and its application in medical sciences. Symmetry 12(11), 1885 (2020)

    Article  Google Scholar 

  36. Rashmanlou, H., Borzooei, R.A.: Vague graphs with application. J. Intell. Fuzzy Syst. 30(6), 3291–3299 (2016). https://doi.org/10.3233/IFS-152077

    Article  Google Scholar 

  37. Raut, S., Pal, M.: On chromatic number and perfectness of fuzzy graph. Inf. Sci. 597, 392–411 (2022). https://doi.org/10.1016/j.ins.2022.03.050

    Article  Google Scholar 

  38. Read, R.C.: An introduction to chromatic polynomials. J. Comb. Theory. 4(1), 52–71 (1968)

    Article  MathSciNet  Google Scholar 

  39. Repalle, V.N.R., Hordofa, L.Z., Ashebo, M.A.: Chromatic polynomial of intuitionistic fuzzy graphs using \((\alpha , \beta )\)-Levels. Int. J. Math. Math. Sci. (2022). https://doi.org/10.1155/2022/9320700

    Article  MathSciNet  Google Scholar 

  40. Rifayathali, M.A., Prasanna, A., Ismail Mohideen, S.: Intuitionistic fuzzy graph coloring. Int. J. Res. Anal. 5(3), 734–742 (2018)

    Google Scholar 

  41. Rosyida, I., Indrati, C.R.: An algorithm for coloring of picture fuzzy graphs based on strong and weak adjacencies, and its application. Algorithms 16(12), 551 (2023)

    Article  Google Scholar 

  42. Rosyida, I., Suryono, S.: Coloring picture fuzzy graphs through their cuts and its computation. Int. J. Adv. Intell. Inf. 7(1), 63–75 (2021)

    Google Scholar 

  43. Rosyida, I., Indrati, C.R., Sugeng, K.A.: A new approach for determining fuzzy chromatic number of fuzzy graph. J. Intell. Fuzzy Syst. 28(5), 2331–2341 (2015)

    Article  MathSciNet  Google Scholar 

  44. Samanta, S., Pramanik, T., Pal, M.: Fuzzy colouring of fuzzy graphs. Afrika Mat. 27, 37–50 (2016). https://doi.org/10.1007/s13370-015-0317-8

    Article  MathSciNet  Google Scholar 

  45. Sanli, U., Cangul, I.N.: A new method for calculating the chromatic polynomial. Appl. Sci. 19, 110–121 (2017)

    MathSciNet  Google Scholar 

  46. Shannon, A., Atanassov, K.T.: A first step to a theory of the intuitionistic fuzzy graphs. In: Proceedings of the 1st Workshop on Fuzzy Based Expert Systems, Sofia, Bulgaria, pp. 59–61 (1994)

  47. Shao, Z., Kosari, S., Rashmanlou, H., Shoaib, M.: New concepts in intuitionistic fuzzy graph with application in water supplier systems. Mathematics 8(8), 1241 (2020)

    Article  Google Scholar 

  48. Shi, X., Kosari, S.: Certain properties of domination in product vague graphs with an application in medicine. Front. Phys. 9, 680634 (2021). https://doi.org/10.3389/fphy.2021.680634

    Article  Google Scholar 

  49. Shoaib, M., Mahmood, W., Xin, Q., Tchier, F.: Certain operations on picture fuzzy graph with application. Symmetry 13(12), 2400 (2021). https://doi.org/10.3390/sym13122400

    Article  Google Scholar 

  50. Siddique, S., Ahmad, U., Akram, M.: A study on generalized graphs representations of complex neutrosophic information. J. Appl. Math. Comput. 65, 481–514 (2021). https://doi.org/10.1007/s12190-020-01400-0

    Article  MathSciNet  Google Scholar 

  51. Sitara, M., Akram, M., Riaz, M.: Decision-making analysis based on q-rung picture fuzzy graph structures. J. Appl. Math. Comput. 67, 541–577 (2021). https://doi.org/10.1007/s12190-020-01471-z

    Article  MathSciNet  Google Scholar 

  52. Wei, G.: Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica 28(3), 547–564 (2017)

    Article  Google Scholar 

  53. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  54. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)

    Article  MathSciNet  Google Scholar 

  55. Zuo, C., Pal, A., Dey, A.: New concepts of picture fuzzy graphs with application. Mathematics 7(5), 470 (2019). https://doi.org/10.3390/math7050470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Mustafa.

Ethics declarations

Conflict of interest

The authors state that they have no conflicts of interest.

Ethical approval

The authors confirm that this article does not involve any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Q., Mustafa, G. Chromatic polynomial of a picture fuzzy graph with application in traffic light control. J. Appl. Math. Comput. 70, 1395–1418 (2024). https://doi.org/10.1007/s12190-024-02011-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02011-9

Keywords

Mathematics Subject Classification

Navigation