Skip to main content
Log in

A novel delayed discrete fractional Mittag-Leffler function: representation and stability of delayed fractional difference system

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a delayed discrete Mittag-Leffler matrix function generated by two noncommutative square matrices is introduced. Utilizing this function, the paper establishes an explicit expression for solving constant delay fractional difference systems. Additionally, a criterion for determining the Ulam-Hyers stability of delay fractional difference systems with constant coefficients is derived using the aforementioned explicit representation formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khusainov, D.Y., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Zilina Math. Ser. 17(1), 101–8 (2003)

    MathSciNet  Google Scholar 

  2. Diblik, J., Khusainov, D.Y.: Representation of solutions of linear discrete systems with constant coefficients and pure delay. Adv. Differ. Equ. 06, 080825 (2016)

    MathSciNet  Google Scholar 

  3. Diblik, J., Khusainov, D.Y.: Representation of solutions of discrete delayed system \(x(k+1)=ax(k)+bx(k-m)+f(k)\) with commutative matrices. J. Math. Anal. Appl. 318(1), 63–76 (2006)

    MathSciNet  Google Scholar 

  4. Mahmudov, N.I.: Representation of solutions of discrete linear delay systems with non permutable matrices. Appl. Math. Lett. 85, 8–14 (2018)

    MathSciNet  Google Scholar 

  5. Mahmudov, N.I.: Delayed linear difference equations: the method of Z-transform. Electron. J. Qual. Theory Differ. Equ. 53, 1–12 (2020)

    MathSciNet  Google Scholar 

  6. Medved, M., Pospíšil, M.: Representation of solutions of systems of linear differential equations with multiple delays and linear parts given by nonpermutable matrices. J. Math. Sci. 228(3), 276–89 (2018)

    MathSciNet  Google Scholar 

  7. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Non-linear Sci. Numer. Simul. 64, 213–31 (2018)

    Google Scholar 

  8. Huang, L.L., Park, J.H., Wu, G.C., Mo, Z.W.: Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 370, 112633 (2020)

    MathSciNet  Google Scholar 

  9. Li, M., Wang, J.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–65 (2018)

    MathSciNet  Google Scholar 

  10. Li, M., Wang, J.: Finite time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–6 (2017)

    MathSciNet  Google Scholar 

  11. Li, M., Wang, J.: Representation of solution of a Riemann-Liouville fractional differential equation with pure delay. Appl. Math. Lett. 85, 118–24 (2018)

    MathSciNet  Google Scholar 

  12. Mahmudov, N.I.: Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations. Math. Methods Appl. Sci. 42(16), 5489–97 (2019)

    MathSciNet  Google Scholar 

  13. Li, M., Wang, J.: Finite time stability and relative controllability of Riemann-Liouville fractional delay differential equations. Math. Methods Appl. Sci. 42(18), 6607–23 (2019)

    MathSciNet  Google Scholar 

  14. Wu, G.C., Baleanu, D., Luo, W.: Lyapunov functions for Riemann-Liouville-like fractional difference equations. Appl. Math. Comput. 314, 228–36 (2017)

    MathSciNet  Google Scholar 

  15. Atıcı, F.M., Eloe, P.W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I 3, 1–12 (2009)

    Google Scholar 

  16. Wu, G.C., Baleanu, D., Zeng, S.D.: Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion. Commun. Nonlinear Sci. Numer. Simul. 57, 299–308 (2018)

    MathSciNet  Google Scholar 

  17. Du, F., Jia, B.: Finite-time stability of a class of nonlinear fractional delay difference systems. Appl. Math. Lett. 98, 233–9 (2019)

    MathSciNet  Google Scholar 

  18. Wu, G.C., Deng, Z.G., Baleanu, D., Zeng, D.Q.: New variable-order fractional chaotic systems for fast image encryption. Chaos 29, 083103 (2019)

    MathSciNet  Google Scholar 

  19. Huang, L.L., Wu, G.C., Baleanu, D., Wang, H.Y.: Discrete fractional calculus for interval-valued systems. Fuzzy Sets Syst. (2020). https://doi.org/10.1016/j.fss.2020.04.008

    Article  Google Scholar 

  20. Atici, F.M., Atici, M., Nguyen, N., Zhoroev, T., Koch, G.: A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects. Comput. Math. Biophys. 7(1), 10–24 (2019)

    MathSciNet  Google Scholar 

  21. Abdeljawad, T., Baleanu, D.: Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv. Differ. Equ. 2016, 232 (2016)

    MathSciNet  Google Scholar 

  22. Abdeljawad, T.: Fractional difference operators with discrete generalized Mittag-Leffler kernels. Chaos Solitons Fractals 126, 315–24 (2019)

    MathSciNet  Google Scholar 

  23. Cermák, J., Kisela, T., Nechvátal, L.: Discrete Mittag-Leffler functions in linear fractional difference equations. Abstr. Appl. Anal. 2011, 565067 (2011)

    MathSciNet  Google Scholar 

  24. Alzabut, J., Abdeljawad, T.: A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system. Appl. Anal. Discrete Math. 12(1), 36–48 (2018)

    MathSciNet  Google Scholar 

  25. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62(3), 1602–11 (2011)

    MathSciNet  Google Scholar 

  26. Atıcı, F.M., Eloe, P.W.: Gronwall’s inequality on discrete fractional calculus. Comput. Math. Appl. 64(10), 3193–200 (2012)

    MathSciNet  Google Scholar 

  27. Atıcı, F.M.: Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41, 353–370 (2011)

    MathSciNet  Google Scholar 

  28. Wu, G.C., Abdeljawad, T., Liu, J., Baleanu, D., Wu, K.T.: Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonliniear Anal. Model Control 24, 919–36 (2019)

    MathSciNet  Google Scholar 

  29. Ma, K., Sun, S.: Finite-time stability of linear fractional time-delay q-difference dynamical system. J. Appl. Math. Comput. 57(1–2), 591–604 (2018)

    MathSciNet  Google Scholar 

  30. Lazarevic, M.P., Spasic, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Modell. 49(3–4), 475–81 (2009)

    MathSciNet  Google Scholar 

  31. Jia, B., Erbe, L., Peterson, A.: Comparison theorems and asymptotic behavior of solutions of Caputo fractional equations. Int. J. Differ. Equ. 11, 163–78 (2016)

    MathSciNet  Google Scholar 

  32. Jia, B., Erbe, L., Peterson, A.: Comparison theorems and asymptotic behavior of solutions of discrete fractional equations. Electron. J. Qual. Theory Differ. Equ. 89, 1–18 (2015)

    MathSciNet  Google Scholar 

  33. Du, F., Lu, J.: Exploring a new discrete delayed Mittag-Leffler matrix function to investigate finite-time stability of Riemann-Liouville fractional-order delay difference systems. Math. Methods Appl. Sci. 45, 1–23 (2022)

    MathSciNet  Google Scholar 

  34. Goodrich, C., Peterson, A.: Discrete Fractional Calculus. Springer, New York (2015)

    Google Scholar 

  35. Jung, S.M., Nam, Y.W.: Hyers-Ulam stability of the first order inhomogeneous matrix difference equation. J. Comput. Anal. Appl. 23(8), 1368–1383 (2017)

    MathSciNet  Google Scholar 

  36. Jung, S.M., Nam, Y.W.: On the Hyers-Ulam stability of the first-order difference equation. J. Funct. Spaces 6, 6078298 (2016)

    MathSciNet  Google Scholar 

  37. Jung, S.M.: Hyers-Ulam stability of the first-order matrix difference equations. Adv. Differ. Equ. 2015(170), 13 (2015)

    MathSciNet  Google Scholar 

  38. Jung, S.M., Nam, Y.W.: Hyers-Ulam stability of the delayed homogeneous matrix difference equation with constructive method. J. Comput. Anal. Appl. 22(5), 941–948 (2017)

    MathSciNet  Google Scholar 

  39. Onitsuka, M.: Hyers-Ulam stability of first-order nonhomogeneous linear difference equations with a constant stepsize. Appl. Math. Comput. 330, 143–151 (2018)

    MathSciNet  Google Scholar 

  40. Bas, E., Ozarslan, R.: Theory of discrete fractional Sturm-Liouville equations and visual results. AIMS Math. 4(3), 593–612 (2019)

    MathSciNet  Google Scholar 

  41. Chen, C., Jia, B., Liu, X., Erbe, L.: Existence and uniqueness theorem of the solution to a class of nonlinear nabla fractional difference system with a time delay. Mediterr. J. Math. 15(6), 212 (2018)

    MathSciNet  Google Scholar 

  42. Xu, J., Goodrich, C.S., Cui, Y.: Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities. Rev. R. Acad. Cienc. Exactas Fí, s Nat. Ser. A Mat. RACSAM 113(2), 1343–1358 (2019)

    MathSciNet  Google Scholar 

  43. Jagan, M.J.: Hyers-Ulam stability of fractional nabla difference equations. Int. J. Anal. 5, 7265307 (2016)

    MathSciNet  Google Scholar 

  44. Chen, C., Bohner, M., Jia, B.: Ulam-Hyers stability of Caputo fractional difference equations. Math. Methods Appl. Sci. 42, 7461–7470 (2019). https://doi.org/10.1002/mma.5869

    Article  MathSciNet  Google Scholar 

  45. Chen, Y.: Representation of solutions and finite-time stability for fractional delay oscillation difference equations. Math. Meth. Appl. Sci. (2023). https://doi.org/10.1002/mma.9799

    Article  Google Scholar 

  46. Liang, Y., Shi, Y., Fan, Z.: Exact solutions and Hyers-Ulam stability of fractional equations with double delays. Fract. Calc. Appl. Anal. 26, 439–460 (2023)

    MathSciNet  Google Scholar 

  47. Pan, R., Fan, Z.: Analyses of solutions of Riemann-Liouville fractional oscillatory differential equations with pure delay. Math. Meth. Appl. Sci. 46(9), 10450–10464 (2023)

    MathSciNet  Google Scholar 

  48. Du, F., Jia, B.: Finite time stability of fractional delay difference systems: a discrete delayed Mittag-Leffler matrix function approach. Chaos Solitons Fractals 141, 110430 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2023/R/1445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihan Alahmadi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadalla, M., Mahmudov, N.I. & Alahmadi, J. A novel delayed discrete fractional Mittag-Leffler function: representation and stability of delayed fractional difference system. J. Appl. Math. Comput. 70, 1571–1599 (2024). https://doi.org/10.1007/s12190-024-02012-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02012-8

Keywords

Mathematics Subject Classification

Navigation