Skip to main content
Log in

Maximum bound principle preserving linear schemes for nonlocal Allen–Cahn equation based on the stabilized exponential-SAV approach

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The nonlocal Allen–Cahn equation with nonlocal diffusion operator is important for simulating a series of physical and biological phenomena involving long-distance interactions in space. As a generalization of the classical Allen–Cahn equation, the nonlocal Allen–Cahn equation also satisfies the energy dissipation law and maximum bound principle. In this paper, we construct first- and second-order (in time) accurate linear schemes for the nonlocal Allen–Cahn type model based on the stabilized exponential scalar auxiliary variable approach which preserve discrete maximum bound principle and unconditionally energy stability. On the one hand, we prove the discrete maximum bound principle, unconditional energy stability and error convergence analysis carefully and rigorously in the fully discrete levels. On the other hand, we adopt an efficient FFT-based fast solver to compute the nearly full coefficient matrix which generated from the spatial discretization, which improves the computational efficiency. Finally, typical numerical experiments are presented to demonstrate the performance of our proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Bates, P.W., Brown, S., Han, J.: Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model. 6, 33–49 (2009)

    MathSciNet  Google Scholar 

  3. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28, 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  4. Ju, L., Li, X., Qiao, Z.: Stabilized exponential-SAV schemes preserving energy dissipation law and maximum bound principle for the Allen-Cahn type equations. J. Sci. Comput. 92, 1–34 (2022)

    Article  MathSciNet  Google Scholar 

  5. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  Google Scholar 

  6. Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation. J. Comput. Phys. 363, 39–54 (2018)

    Article  MathSciNet  Google Scholar 

  7. Li, J., Ju, L., Cai, Y., Feng, X.: Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint. J. Sci. Comput. 87, 98 (2021)

    Article  MathSciNet  Google Scholar 

  8. Liu, H., Cheng, A., Wang, H.: A fast Galerkin finite element method for a space-time fractional Allen-Cahn equation. J. Comput. Appl. Math. 368, 112482 (2020)

    Article  MathSciNet  Google Scholar 

  9. Yu, W., Li, Y., Zhao, J., Wang, Q.: Second order linear thermodynamically consistent approximations to nonlocal phase field porous media models. Comput. Methods Appl. Mech. Eng. 386, 114089 (2021)

    Article  MathSciNet  Google Scholar 

  10. Yin, B., Liu, Y., Li, H., He, S.: Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 379, 351–372 (2019)

    Article  MathSciNet  Google Scholar 

  11. Zhai, S., Ye, C., Weng, Z.: A fast and efficient numerical algorithm for fractional Allen-Cahn with precise nonlocal mass conservation. Appl. Math. Lett. 103, 106190 (2020)

    Article  MathSciNet  Google Scholar 

  12. Chen, C., Zhang, J., Yang, X.: Efficient numerical scheme for a new hydrodynamically-coupled conserved Allen-Cahn type Ohta-Kawaski phase-field model for diblock copolymer melt. Comput. Phys. Commun. 256, 107418 (2020)

    Article  MathSciNet  Google Scholar 

  13. Guo, S., Mei, L., Li, Y.: An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction-diffusion-wave equation. Comput. Math. Appl. 74, 2449–2465 (2017)

    Article  MathSciNet  Google Scholar 

  14. Bates, P.W.: On some nonlocal evolution equations arising in materials science. Fields Inst. Commun. 48, 13–52 (2006)

    MathSciNet  Google Scholar 

  15. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2019)

    Article  MathSciNet  Google Scholar 

  16. Gajewski, H., Gärtner, K.: On a nonlocal model of image segmentation. Z. Angew. Math. Phys. 56, 572–591 (2005)

    Article  MathSciNet  Google Scholar 

  17. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Siam J. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  Google Scholar 

  18. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. SIAM Rev. 63, 317–359 (2021)

    Article  MathSciNet  Google Scholar 

  19. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  20. Guan, Z., Wang, C., Wise, S.M.: A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation. Numer. Math. 128, 377–406 (2014)

    Article  MathSciNet  Google Scholar 

  21. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  Google Scholar 

  22. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34, 451–461 (2016)

    Article  MathSciNet  Google Scholar 

  23. Xiao, X., Feng, X., Yuan, J.: The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discr. Contin. Dyn. Syst. Ser. B 22, 2857–2877 (2017)

    MathSciNet  Google Scholar 

  24. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87, 1859–1885 (2018)

    Article  MathSciNet  Google Scholar 

  25. Xu, Z., Yang, X., Zhang, H., Xie, Z.: Efficient and linear schemes for anisotropic Cahn-Hilliard model using the stabilized-invariant energy quadratization (S-IEQ) approach. Comput. Phys. Commun. 238, 36–49 (2019)

    Article  MathSciNet  Google Scholar 

  26. Yang, X., Zhang, G.: Convergence analysis for the Invariant Energy Quadratization (IEQ) schemes for solving the Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential. J. Sci. Comput. 82, 1–28 (2020)

    Article  MathSciNet  Google Scholar 

  27. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)

    Article  MathSciNet  Google Scholar 

  28. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  29. Cheng, Q., Liu, C., Shen, J.: Generalized SAV approaches for gradient systems. J. Comput. Appl. Math. 394, 113532 (2021)

    Article  MathSciNet  Google Scholar 

  30. Hou, D., Azaïez, M., Xu, C.: A variant of scalar auxiliary variable approaches for gradient flows. J. Comput. Phys. 395, 307–332 (2019)

    Article  MathSciNet  Google Scholar 

  31. Huang, F., Shen, J., Yang, Z.: A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. SIAM J. Sci. Comput. 42, 2514–2536 (2020)

    Article  MathSciNet  Google Scholar 

  32. Liu, Z., Li, X.: The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J. Sci. Comput. 42, 630–655 (2020)

    Article  MathSciNet  Google Scholar 

  33. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    Article  MathSciNet  Google Scholar 

  34. Liao, H., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen-Cahn equation. SIAM J. Numer. Anal. 58, 2294–2314 (2020)

    Article  MathSciNet  Google Scholar 

  35. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)

    Article  MathSciNet  Google Scholar 

  36. Li, J., Li, X., Ju, L., Feng, X.: Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle. SIAM J. Sci. Comput. 43, 1780–1802 (2021)

    Article  MathSciNet  Google Scholar 

  37. Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. J. Comput. Phys. 439, 110405 (2021)

    Article  MathSciNet  Google Scholar 

  38. Liu, Z., Li, X.: The fast scalar auxiliary variable approach with unconditional energy stability for nonlocal Cahn-Hilliard equation. Numer. Methods Part. Differ. Equ. 37, 244–261 (2020)

    Article  MathSciNet  Google Scholar 

  39. Chen, L., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grants 11971272, 12001336.

Author information

Authors and Affiliations

Authors

Contributions

XM wrote the main manuscript text and completed the numerical experiments. AC, ZL and XM carried out the numerical analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Aijie Cheng.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Cheng, A. & Liu, Z. Maximum bound principle preserving linear schemes for nonlocal Allen–Cahn equation based on the stabilized exponential-SAV approach. J. Appl. Math. Comput. 70, 1471–1498 (2024). https://doi.org/10.1007/s12190-024-02014-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02014-6

Keywords

Mathematics Subject Classification

Navigation