Skip to main content
Log in

Piecewise conformable fractional impulsive differential system with delay: existence, uniqueness and Ulam stability

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Ideally, the state variable follows a constant motion law over time. However, due to the finiteness of motion speed, almost all systems have time delay. In this paper, we investigate a new class of piecewise conformable fractional impulsive differential system with delay under two point inhomogeneous boundary condition. In the system, the motion laws of state variable vary at different time periods, and they interact with each other through time delay “\(\tau \)” and time leading “\(-\tau \)”, so as to be more realistic. By employing the well-know fixed point theorems, the sufficient conditions for the existence and uniqueness of solutions to the system are established. Under the conditions of ensuring the existence of the system’s solutions, we conclude further that the system has Ulam–Hyers stability and Ulam–Hyers–Rassias stability by means of nonlinear functional analysis method. Finally, we give a feasible example to explain our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    Google Scholar 

  2. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Switzerland (1993)

    Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)

    Google Scholar 

  5. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  6. Khalil, R., Al-Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014). https://doi.org/10.1016/j.cam.2014.01.002

    Article  MathSciNet  Google Scholar 

  7. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015). https://doi.org/10.1016/j.cam.2014.10.016

    Article  MathSciNet  Google Scholar 

  8. Zhang, L., Zhang, W., Liu, X., Jia, M.: Existence of positive solutions for integral boundary value problems of fractional differential equations with p-Laplacian. Adv. Differ. Equ. 2017, 36 (2017). https://doi.org/10.1186/s13662-017-1086-5

    Article  MathSciNet  Google Scholar 

  9. Khan, H., Li, Y., Chen, W., et al.: Existence theorems and Hyers–Ulam stability for a coupled system of fractional differential equations with \(p\)-Laplacian operator. Bound. Value Probl. 2017, 157 (2017). https://doi.org/10.1186/s13661-017-0878-6

    Article  MathSciNet  Google Scholar 

  10. Wang, H., Liu, S., Li, H.: Positive solutions to \(p\)-Laplacian fractional differential equations with infinite-point boundary value conditions. Adv. Differ. Equ. 2018, 425 (2018). https://doi.org/10.1186/s13662-018-1886-2

    Article  MathSciNet  Google Scholar 

  11. Zhang, L., Zhang, W., Liu, X., Jia, M.: Positive solutions of fractional \(p\)-Laplacian equations with integral boundary value and two parameters. J. Inequal. Appl. 2, 2 (2020). https://doi.org/10.1186/s13660-019-2273-6

    Article  MathSciNet  Google Scholar 

  12. Quan, H., Liu, X., Jia, M.: The method of upper and lower solutions for a class of fractional differential coupled systems. Adv. Differ. Equ. 2021, 263 (2021). https://doi.org/10.1186/s13662-021-03419-4

    Article  MathSciNet  Google Scholar 

  13. Ahmadkhanlu, A.: On the existence and uniqueness of positive solutions for a p-Laplacian fractional boundary value problem with an integral boundary condition with a parameter. Comput. Methods Differ. Equ. 9(4), 1001–1012 (2021). https://doi.org/10.22034/CMDE.2020.38643.1699

    Article  MathSciNet  Google Scholar 

  14. Zhang, Y., Liu, X., Jia, M.: On the boundary value problems of piecewise differential equations with left-right fractional derivatives and delay. Nonlinear Anal. Model. Control. 26(6), 1087–1105 (2021). https://doi.org/10.15388/namc.2021.26.24622

    Article  MathSciNet  Google Scholar 

  15. Ahmadini, A.A.H., Khuddush, M., Rao, S.N.: Multiple positive solutions for a system of fractional order BVP with p-Laplacian operators and parameters. Axioms 12(10), 974 (2023). https://doi.org/10.3390/axioms12100974

    Article  Google Scholar 

  16. Nie, D., Riaz, U., Begum, S., Zada, A.: A coupled system of \(p\)-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Math. 8(7), 16417–16445 (2023). https://doi.org/10.3934/math.2023839

    Article  MathSciNet  Google Scholar 

  17. Zhao, K.: Existence and uh-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag–Leffler functions. Filomat 37(4), 1053–1063 (2023). https://doi.org/10.2298/FIL2304053Z

    Article  MathSciNet  Google Scholar 

  18. Liu, X., Jia, M.: A class of iterative functional fractional differential equation on infinite interval. Appl. Math. Lett. 136, 108473 (2023). https://doi.org/10.1016/j.aml.2022.108473

    Article  MathSciNet  Google Scholar 

  19. Zhang, L., Liu, X., Yu, Z., Jia, M.: The existence of positive solutions for high order fractional differential equations with sign changing nonlinearity and parameters. AIMS Math. 8(11), 25990–26006 (2023). https://doi.org/10.3934/math.20231324

    Article  MathSciNet  Google Scholar 

  20. Zhang, Y., Cui, Y., Zuo, Y.: Existence and uniqueness of solutions for fractional differential system with four-point coupled boundary conditions. J. Appl. Math. Comput. 69, 2263–2276 (2023). https://doi.org/10.1007/s12190-022-01834-8

    Article  MathSciNet  Google Scholar 

  21. Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of \(p\)-Laplacian with fractional derivative. Bound. Value Probl. 2017, 5 (2017). https://doi.org/10.1186/s13661-016-0735-z

    Article  MathSciNet  Google Scholar 

  22. Khan, T.U., Khan, M.A.: Generalized conformable fractional operators. J. Comput. Appl. Math. 346, 378–389 (2019). https://doi.org/10.1016/j.cam.2018.07.018

    Article  MathSciNet  Google Scholar 

  23. Khaled, S.M., El-Zahar, E.R., Ebaid, A.: Solution of Ambartsumian delay differential equation with conformable derivative. Mathematics 7(5), 425 (2019). https://doi.org/10.3390/math7050425

    Article  Google Scholar 

  24. Agarwal, P., Sidi Ammi, M.R., Asad, J.: Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the conformable sense. Adv. Differ. Equ. 2021, 162 (2021). https://doi.org/10.1186/s13662-021-03319-7

    Article  MathSciNet  Google Scholar 

  25. Younus, A., Bukhsh, K., Alqudah, M.A., Abdeljawad, T.: Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Math. 7(7), 12050–12076 (2022). https://doi.org/10.3934/math.2022670

    Article  MathSciNet  Google Scholar 

  26. Asawasamrit, S., Ntouyas, S.K., Thiramanus, P., et al.: Periodic boundary value problems for impulsive conformable fractional integro-differential equations. Bound. Value Probl. 2016, 122 (2016). https://doi.org/10.1186/s13661-016-0629-0

    Article  MathSciNet  Google Scholar 

  27. Wang, J., Bai, C.: Antiperiodic boundary value problems for impulsive fractional functional differential equations via conformable derivative. J. Funct. Spaces 2018, 7643123 (2018). https://doi.org/10.1155/2018/7643123

    Article  MathSciNet  Google Scholar 

  28. Ahmad, B., Alghanmi, M., Alsaedi, A., Agarwal, R.: On an impulsive hybrid system of conformable fractional differential equations with boundary conditions. Int. J. Syst. Sci. 51(5), 958–970 (2020). https://doi.org/10.1080/00207721.2020.1746437

    Article  MathSciNet  Google Scholar 

  29. Thaiprayoon, C., Ntouyas, S.K., Tariboon, J.: Monotone iterative technique for nonlinear impulsive conformable fractional differential equations with delay. Commun. Math. Appl. 12(1), 11–27 (2021). https://doi.org/10.26713/cma.v12i1.587

    Article  Google Scholar 

  30. Ulam, S.M.: Problems in Modern Mathematics. Interscience Publishers, New York (1960)

    Google Scholar 

  31. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27(4), 222–224 (1941). https://doi.org/10.1073/pnas.27.4.222

    Article  MathSciNet  Google Scholar 

  32. Rassias, D.H.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978). https://doi.org/10.1090/s0002-9939-1978-0507327-1

    Article  MathSciNet  Google Scholar 

  33. Wang, J., Feckan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395(1), 258–264 (2012). https://doi.org/10.1016/j.jmaa.2012.05.040

    Article  MathSciNet  Google Scholar 

  34. Chen, F., Zhou, Y.: Existence and Ulam stability of solutions for discrete fractional boundary value problem. Discret. Dyn. Nat. Soc. 2013, 459161 (2013). https://doi.org/10.1155/2013/459161

    Article  MathSciNet  Google Scholar 

  35. Wang, J., Shah, K., Ali, A.: Existence and Hyers–Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Methods Appl. Sci. 41, 2392–2402 (2018). https://doi.org/10.1002/mma.4748

    Article  MathSciNet  Google Scholar 

  36. Li, M., Wang, J., O’Regan, D.: Existence and Ulam’s stability for conformable fractional differential equations with constant coefficients. Bull. Malays. Math. Sci. Soc. 42, 1791–1812 (2019). https://doi.org/10.1007/s40840-017-0576-7

    Article  MathSciNet  Google Scholar 

  37. Muthaiah, S., Baleanu, D., Thangaraj, N.G.: Existence and Hyers–Ulam type stability results for nonlinear coupled system of Caputo–Hadamard type fractional differential equations. AIMS Math. 6(1), 168–194 (2021). https://doi.org/10.3934/math.2021012

    Article  MathSciNet  Google Scholar 

  38. Din, A., Li, Y., Khan, F.M., et al.: On Analysis of fractional order mathematical model of Hepatitis B using Atangana–Baleanu Caputo (ABC) derivative. Fractals 30(1), 2240017 (2021). https://doi.org/10.1142/S0218348X22400175

    Article  Google Scholar 

  39. Liu, P., Huang, X., Zarin, R.: Modeling and numerical analysis of a fractional order model for dual variants of SARS-CoV-2. Alex. Eng. J. 65, 427–442 (2023). https://doi.org/10.1016/j.aej.2022.10.025

    Article  Google Scholar 

  40. Wan, F., Liu, X., Jia, M.: Ulam–Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions. AIMS Math. 7(4), 6066–6083 (2022). https://doi.org/10.3934/math.2022338

    Article  MathSciNet  Google Scholar 

  41. Zhao, K.: Solvability and GUH-stability of a nonlinear CF-fractional coupled Laplacian equations. AIMS Math. 8(6), 13351–13367 (2023). https://doi.org/10.3934/math.2023676

    Article  MathSciNet  Google Scholar 

  42. Agarwal, R.P., Hristova, S., O’Regan, D.: Boundary value problems for fractional differential equations of Caputo type and Ulam type stability: basic concepts and study. Axioms 12(3), 226 (2023). https://doi.org/10.3390/axioms12030226

    Article  Google Scholar 

  43. Smart, D.: A fixed-point theorems. Math. Proc. Camb. 57(2), 430 (1961). https://doi.org/10.1017/S0305004100035404

    Article  Google Scholar 

  44. Granas, A., Dugundji, J.: Elementary Fixed Point Theorems. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21593-8_2

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant No. 12371308). The authors would like to thank the anonymous reviewers and the editor for their constructive suggestions on improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luchao Zhang.

Ethics declarations

Conflict of interest

The authors declares that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, X., Jia, M. et al. Piecewise conformable fractional impulsive differential system with delay: existence, uniqueness and Ulam stability. J. Appl. Math. Comput. 70, 1543–1570 (2024). https://doi.org/10.1007/s12190-024-02017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02017-3

Keywords

Mathematics Subject Classification

Navigation