Skip to main content
Log in

Implicit-explicit Runge–Kutta methods for pricing financial derivatives in state-dependent regime-switching jump-diffusion models

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we have devised a novel class of implicit-explicit Runge–Kutta methods for the valuation of financial derivatives under state-dependent regime-switching jump-diffusion models. The developed methods utilize an implicit technique to solve the problem without performing inversion of the coefficient matrix at each state of the economy. The pricing of European options under the regime-switching jump-diffusion process is formulated by coupled partial integro-differential equations, whereas the pricing framework for American options is based on addressing coupled linear complementary problems. The operator splitting technique is employed along with implicit-explicit methods to solve the linear complementarity problems. Consistency and convergence results of the developed methods are theoretically established using the discrete \(\ell ^{2}\)-norm. The accuracy and efficiency of developed methods are validated by solving the European and American options at different states of the economy under regime-switching jump-diffusion models. Finally, the computed results are compared with the recently proposed methods mentioned in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of supporting data

All data generated or analyzed during this study are included in this article.

References

  1. Aghdam, Y.E., Mesgarani, H., Amin, A., Gómez-Aguilar, J.F.: An efficient numerical scheme to approach the time fractional Black-Scholes model using orthogonal Gegenbauer polynomials. Comput. Econ. (2023)

  2. Alharbi, R., Alshaery, A.A., Bakodah, H.O., Nuruddeen, R.I., Gómez-Aguilar, J.F.: Revisiting (2+1)-dimensional Burgers’ dynamical equations: analytical approach and Reynolds number examination. Phys. Scr. 98, 085225 (2023)

    Google Scholar 

  3. Andersen, L., Andereasen, J.: Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231–262 (2000)

    Google Scholar 

  4. Bastani, A.F., Ahmadi, Z., Damircheli, D.: A radial basis collocation method for pricing American options under regime-switching jump-diffusion models. Appl. Numer. Math. 65, 79–90 (2013)

    MathSciNet  Google Scholar 

  5. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    MathSciNet  Google Scholar 

  6. Chen, Y.: Second-order IMEX scheme for a system of partial integro-differential equations from Asian option pricing under regime-switching jump-diffusion models. Numer. Algor. 89, 1823–1843 (2022)

    MathSciNet  Google Scholar 

  7. Chen, Y., Xiao, A., Wang, W.: An IMEX-BDF2 compact scheme for pricing options under regime-switching jump-diffusion models. Math. Methods Appl. Sci. 42, 2646–2663 (2019)

    MathSciNet  Google Scholar 

  8. Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43, 1596–1626 (2005)

    MathSciNet  Google Scholar 

  9. Costabile, M., Leccadito, A., Massabó, I., Russo, E.: Option pricing under regime-switching jump-diffusion models. J. Comput. Appl. Math. 256, 152–167 (2014)

    MathSciNet  Google Scholar 

  10. D’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87–112 (2005)

    MathSciNet  Google Scholar 

  11. Elliot, L., Moore, J.: Hidden Markov models: Estimation and control. Springer, New York (1995)

    Google Scholar 

  12. Fereshtian, A., Mollapourasl, R., Avram, F.: RBF approximation by partition of unity for valuation of options under exponential Lévy processes. J. Comput. Sci. 32, 44–55 (2019)

    MathSciNet  Google Scholar 

  13. Florescu, I., Liu, R., Mariani, M.C., Sewell, G.: Numerical schemes for option pricing in regime-switching jump diffusion models. Int. J. Theor. Appl. Finance 16, 1350046 (2013)

    MathSciNet  Google Scholar 

  14. Haghi, M., Mollapourasl, R., Vanmaele, M.: An RBF-FD method for pricing American options under jump-diffusion models. Comput. Math. Appl. 76, 2434–2459 (2018)

    MathSciNet  Google Scholar 

  15. Hamilton, J.D.: Analysis of time series subject to changes in regime. J. Econ. 45, 39–70 (1990)

    MathSciNet  Google Scholar 

  16. Heidari, S., Azari, H.: A front-fixing finite element method for pricing American options under regime-switching jump-diffusion models. Comput. Appl. Math. 37, 3691–3707 (2018)

    MathSciNet  Google Scholar 

  17. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Fin. Stud. 6, 323–343 (1993)

    MathSciNet  Google Scholar 

  18. Huang, Y., Forsyth, P.A., Labahn, G.: Methods for pricing American options under regime switching. SIAM J. Sci. Comput. 33, 2144–2168 (2011)

    MathSciNet  Google Scholar 

  19. Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17, 809–814 (2004)

    MathSciNet  Google Scholar 

  20. Islam, M.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.F.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear Boiti–Leon–Manna–Pempinelli model. Phys. Scr. 98, 085230 (2023)

    Google Scholar 

  21. Jackson, K.R., Jaimungal, S., Surkov, V.: Option pricing with regime switching Lévy processes using Fourier space time stepping. Int. Conf. Financial Eng. Appl. 92–97 (2007)

  22. Jackson, K.R., Jaimungal, S., Surkov, V.: Fourier space time-stepping for option pricing with Lévy models. J. Comput. Fin. 12, 1–29 (2008)

    Google Scholar 

  23. Kazmi, K.: An IMEX predictor–corrector method for pricing options under regime-switching jump-diffusion models. Int. J. Comput. Math. 96, 1137–1157 (2019)

    MathSciNet  Google Scholar 

  24. Khaliq, A.Q.M., Kleefeld, B., Liu, R.H.: Solving complex PDE systems for pricing American options with regime-switching by efficient exponential time differencing schemes. Numer. Methods Partial Differ. Eq. 29, 320–336 (2013)

    MathSciNet  Google Scholar 

  25. Known, Y., Lee, Y.: A second-order tridiagonal method for American options under jump diffusion models. SIAM J. Sci. Comput. 33, 1860–1872 (2011)

    MathSciNet  Google Scholar 

  26. Kou, S.G.: A jump-diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)

    Google Scholar 

  27. Kumar, A., Rajeev, Gómez-Aguilar, J.F.: A numerical solution of a non-classical Stefan problem with space-dependent thermal conductivity, variable latent heat and Robin boundary condition. J. Therm. Anal. Calorim. 147, 14649–14657 (2022)

  28. Kwon, Y., Lee, Y.: A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49, 2598–2617 (2011)

    MathSciNet  Google Scholar 

  29. Lee, S., Lee, Y.: Stability analysis of numerical methods under the regime-switching jump-diffusion model with variable coefficient. ESIAM Math. Model. Numer. Anal. 53, 1741–1762 (2019)

    Google Scholar 

  30. Lee, Y.: Financial options pricing with regime-switching jump-diffusions. Comput. Math. Appl. 68, 392–404 (2014)

    MathSciNet  Google Scholar 

  31. Li, H., Mollapourasl, R., Haghi, M.: A local radial basis function method for pricing options under the regime-switching model. J. Sci. Comput. 79, 517–541 (2019)

    MathSciNet  Google Scholar 

  32. Ma, J., Zhu, T.: Convergence rates of trinomial tree methods for option pricing under regime-switching models. Appl. Math. Lett. 39, 13–18 (2015)

    MathSciNet  Google Scholar 

  33. Maurya, V., Yadav, V.S., Singh, A., Rajpoot, M.K.: Efficient pricing of options in jump-diffusion models: Novel implicit-explicit methods for numerical valuation. Math. Comput. Sim. 217, 202–225 (2024)

    MathSciNet  Google Scholar 

  34. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Finance Econ. 3, 125–144 (1976)

    Google Scholar 

  35. Mesgarani, H., Bakhshandeh, M., Aghdam, Y.E., Gómez-Aguilar, J.F.: The convergence analysis of the numerical calculation to price the time-fractional Black–Scholes model. Comput. Econ. 62, 1845–1856 (2023)

    Google Scholar 

  36. Mollapourasl, R., Haghi, M., Liu, R.: Localized kernel-based approximation for pricing financial options under regime-switching jump-diffusion model. Appl. Numer. Math. 134, 81–104 (2018)

    MathSciNet  Google Scholar 

  37. Morales-Delgado, V.F., Taneco-Hernández, M.A., Vargas-De-León, C., Gómez-Aguilar, J.F.: Exact solutions to fractional pharmacokinetic models using multivariate Mittag–Leffler functions. Chaos, Solitons Fractals 168, 113164 (2023)

    MathSciNet  Google Scholar 

  38. Naik, V.: Option valuation and hedging strategies with jumps in the volatility of asset returns. J. Financ. 48, 1969–1984 (1993)

    Google Scholar 

  39. Nuruddeen, R.I., Gómez-Aguilar, J.F., Razo-Hernández, J.R.: Fractionalizing, coupling and methods for the coupled system of two-dimensional heat diffusion models. AIMS Math. 8, 11180–11201 (2023)

    MathSciNet  Google Scholar 

  40. Patel, K.S., Mehra, M.: Fourth-order compact finite difference scheme for American option pricing under regime-switching jump-diffusion models. Int. J. Appl. Comput. Math. 3, 547–567 (2017)

    MathSciNet  Google Scholar 

  41. Rambeerich, N., Pantelous, A.A.: A high order finite element scheme for pricing options under regime switching jump diffusion processes. J. Comput. Appl. Math. 300, 83–96 (2016)

    MathSciNet  Google Scholar 

  42. Sahu, P.K., Patel, K.S., Behera, R.: Three-time levels compact scheme for pricing European options under regime-switching jump-diffusion models. Proc. Ninth Int. Conf. Math. Comput. 697, 367–378 (2023)

    MathSciNet  Google Scholar 

  43. Shirzadi, M., Rostami, M., Dehghan, M., Li, X.: American options pricing under regime-switching jump-diffusion models with meshfree finite point method. Chaos Solitons Fractals 166, 112919 (2023)

    MathSciNet  Google Scholar 

  44. Toivanen, J.: Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 30, 1949–1970 (2008)

    MathSciNet  Google Scholar 

  45. Tour, G., Thakoor, N., Ma, J., Tangman, D.Y.: A spectral element method for option pricing under regime-switching with jumps. J. Sci. Comput. 83 (2020)

  46. Tour, G., Thakoor, N., Tangman, D.Y., Bhuruth, M.: A high-order RBF-FD method for option pricing under regime-switching stochastic volatility models with jumps. J. Comput. Sci. 35, 25–43 (2019)

    MathSciNet  Google Scholar 

  47. Yadav, V.S., Singh, A., Maurya, V., Rajpoot, M.K.: New RK type time-integration methods for stiff convection–diffusion–reaction systems. Comput. Fluids 257, 105865 (2023)

    MathSciNet  Google Scholar 

  48. Yousuf, M.: Numerical solution of systems of partial integral differential equations with application to pricing options. Numer. Methods Partial Differ. Equ. 34, 1033–1052 (2018)

    MathSciNet  Google Scholar 

  49. Yousuf, M., Khaliq, A.Q.M.: Partial differential integral equation model for pricing American option under multi state regime switching with jumps. Numer. Methods Partial Differ. Equ. 39, 890–912 (2023)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Vikas Maurya gratefully acknowledges the financial support from the Council of Scientific and Industrial Research (09/1088(0006) /2019-EMR-I), Government of India, New Delhi.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

VM Conceptualization, computations, and manuscript writing. AS Conceptualization and computations. MKR Supervision, methodology, and original draft preparation. All authors reviewed the manuscript

Corresponding author

Correspondence to Manoj K. Rajpoot.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Consent for publication

All authors hereby consent to the publication of the work in the Journal of Applied Mathematics and Computing.

Ethical approval and consent to participate

Not applicable.

Human and animal ethics

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The free parameter values used in the numerical simulation for pricing the American put option under three-state RSMJD model

State-1: \(\alpha _{1}=\alpha _{2}=10.0\), \(\alpha _{3}=5.0\), \( \beta _{1}=\beta _{2}=\beta _{3}=\gamma _{1}=\gamma _{2}=\gamma _{3} =1.0\).

State-2: \(\alpha _{1}=5.0\), \(\alpha _{2}=\alpha _{3}=2.0\), \( \beta _{1}=\beta _{2}=\beta _{3}=\gamma _{1}=\gamma _{2}=\gamma _{3} =1.0\).

State-3: \(\alpha _{1}=5.0\), \( \alpha _{2}=\alpha _{3}=\beta _{1}=\beta _{2}=\beta _{3}=\gamma _{1}=\gamma _{2}=\gamma _{3} =1.0\).

1.2 The free parameter values used in the numerical simulation for pricing the European and American put options under the five-state RSKJD model

European put option, State-3: \(\alpha _{3}=-3.25\), \(\alpha _{1}=\alpha _{2}=\alpha _{4}=\alpha _{5}=\beta _{1}=\beta _{2}=\beta _{3}=\beta _{4}=\beta _{5} =\gamma _{1}=\gamma _{2}=\gamma _{3} =\gamma _{4} =\gamma _{5} =1.0\).

American put option, State-5: \(\alpha _{1}=\alpha _{3}=\alpha _{4} = 5.0\), \(\alpha _{2}=\alpha _{5}=\beta _{1}=\beta _{2}=\beta _{3}=\beta _{4}=\beta _{5} =\gamma _{1}=\gamma _{2}=\gamma _{3} =\gamma _{4} =\gamma _{5} =1.0\).

American trader’s put option: \(\alpha _{1}=\alpha _{2}=\alpha _{3}=\alpha _{4}=\alpha _{5}=\beta _{1}=\beta _{2}=\beta _{3}=\beta _{4}=\beta _{5} =\gamma _{1}=\gamma _{2}=\gamma _{3}=1\), \(\gamma _{4}=10, \gamma _{5} =15.0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, V., Singh, A. & Rajpoot, M.K. Implicit-explicit Runge–Kutta methods for pricing financial derivatives in state-dependent regime-switching jump-diffusion models. J. Appl. Math. Comput. 70, 1601–1632 (2024). https://doi.org/10.1007/s12190-024-02020-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02020-8

Keywords

Navigation